Answer:
SKID
Explanation:
In general, airplane tracks are flat, they do not have cant, consequently the friction force is what keeps the bicycle in the circle.
Let's use Newton's second law, let's set a reference frame with the horizontal x-axis and the vertical y-axis.
Y axis y
N- W = 0
N = W
X axis (radial)
fr = m a
the acceleration in the curve is centripetal
a =
the friction force has the expression
fr = μ N
we substitute
μ mg = m v²/r
v =
we calculate
v =
v = 1,715 m / s
to compare with the cyclist's speed let's reduce to the SI system
v₀ = 18 km / h (1000 m / 1 km) (1 h / 3600 s) = 5 m / s
We can see that the speed that the cyclist is carrying is greater than the speed that the curve can take, therefore the cyclist will SKID
Answer:
Final temperature of the aluminum = 41.8 °C
Explanation:
We have the equation for energy
E = mcΔT
Here m = 55 g = 0.055 kg
ΔT = T - 27.5
Specific heat capacity of aluminum = 921.096 J/kg.K
E = 725 J
Substituting
E = mcΔT
725 = 0.055 x 921.096 x (T - 27.5)
T - 27.5 = 14.31
T = 41.81 ° C = 41.8 °C
Final temperature of the aluminum = 41.8 °C
Answer:
a) p=0, b) p=0, c) p= ∞
Explanation:
In quantum mechanics the moment operator is given by
p = - i h’ d φ / dx
h’= h / 2π
We apply this equation to the given wave functions
a) φ =
.d φ dx = i k
We replace
p = h’ k
i i = -1
The exponential is a sine and cosine function, so its measured value is zero, so the average moment is zero
p = 0
b) φ = cos kx
p = h’ k sen kx
The average sine function is zero,
p = 0
c) φ =
d φ / dx = -a 2x
.p = i a g ’2x
The average moment is
p = (p₂ + p₁) / 2
p = i a h ’(-∞ + ∞)
p = ∞
An object in motion will stay in motion unless acted upon another force.
Newton used this to prove that gravity existed. Without an unseen force, we could throw a ball and it would go on forever correct? Unless there was something to pull it down, in this case, gravity.