What are the following statements? If there's one that mention a description of current action, or motion, that's your answer.
Explanation:
thomas edison and Nikola tesla were involved in the war of currents
Ok, this is a 2d kinematics problem, the falls 14 m part is confusing, I think it means in the x direction, but you don't need it anyway.
If we know it goes 4m into the air, we know d = 4m (height of wall), we also know the acceleration a=-9.8m/s^2 (because gravity) and that the vertical velocity when it just clears the wall will be 0 m/s, which we'll call our final velocity (Vf). Using Vf^2 = Vi^2 +2a*d, we can solve this for Vi and drop Vf because it's zero to get: Vi = sqrt(-2ad), plug in numbers (don't forget a is negative) and you get 8.85 m/s in the vertical direction. The x-direction velocity requires that we solve the y-direction for time, using Vf= Vi + at, we solve for t, getting t= -Vi/a, plug in numbers t= -8.85/-9.8 = 0.9 s. Now we can use the simple v = d/t (because x-direction has no acceleration (a=0)), and plug in the distance to the wall and the time it takes to get there v = (4/.9) = 4.444 m/s, this is the velocity in the x direction, we use Pythagoras' theorem to find the total velocity, Vtotal = sqrt(Vx^2 + Vy^2), so Vtotal = sqrt(8.85^2+4.444^2) = 9.9m/s. Yay physics!
M = molar mass of the helium gas = 4.0 g/mol
m = mass of the gas given = 18.0 g
n = number of moles of the gas
number of moles of the gas is given as
n = m/M
n = 18.0/4.0
n = 4.5 moles
P = pressure = 2.00 atm = 2.00 x 101325 Pa = 202650 Pa
V = Volume of balloon = ?
T = temperature = 297 K
R = universal gas constant = 8.314
Using the ideal gas equation
P V = n R T
(202650) V = (4.5) (8.314) (297)
V = 0.055 m³