If you're referring to the different colors that usually occur at the tip of missles, rockets and some other aircraft, it either a) signifies the end of a particular plate of metal, fabricated specifically to be for the nose. Sometimes these can even be a different alloy or metal all together. or b) this shows where the curved surface begins, so in the case of damage or imperfections due to wear, they can be repaired and measured more easily. The shape of the nose is extremely important for smooth flight, and a dent or bump formed on it can make the aircraft unstable. If you can measure from where the curve starts by the difference in color, it makes repairing or re-fabricating the part much easier. Many of these curves aren't as simple as they appear.
A star is located 5.9 light years from Earth.
We know that : 1 light year = 9.46 trillion kilometers.
We will calculate the distance in trillion kilometers multiplying the number of light years by 9.46:
5.9 * 9.46 = 55.814
Answer: The distance is 55.814 trillion km.
The time spent in the air by the ball at the given momentum is 6.43 s.
The given parameters;
- <em>momentum of the ball, P = 0.9 kgm/s</em>
- <em>weight of the ball, W = 0.14 N</em>
The impulse experienced by the ball is calculated as follows;

where;
is impulse
is change in momentum
The time of motion of the ball is calculated as follows;

Thus, the time spent in the air by the ball at the given momentum is 6.43 s.
Learn more here:brainly.com/question/13468390
By definition, we have to:
Newton's first law states that any object will remain in a state of rest or with a uniform rectilinear motion unless an external force acts on it.
Therefore, according to the first law of Newton, if the object is already in motion and has no force acting on it then, it will remain with a uniform rectilinear motion.
Answer:
The object will remain with a uniform rectilinear movement when the external force does not act on it.
The acceleration of the car would be 0.33 first and then it would be 0.17.
<u>Explanation:</u>
An applied force is a force that is applied to an object by an individual or another item. On the off chance that an individual is pushing a work area over the room, at that point there is an applied power following up on the article. The applied power is the power applied on the work area by the individual.
The net force applied to the object rises to the mass of the article increased by the measure of its acceleration. The net power following up on the soccer ball is equivalent to the mass of the soccer ball duplicated by its adjustment in speed each second (its acceleration).