Answer:
Force = 24.5 Newton
Explanation:
Given the following data;
Mass = 3.50 kg
Initial velocity, u = 3 m/s
Final velocity, v = 17 m/s
Time, t = 2 seconds
To find the force;
First of all, we would determine the acceleration of the object using the formula;
Acceleration = (v - u)/t
Acceleration = (17 - 3)/2
Acceleration = 14/2
Acceleration = 7 m/s²
Now, we can find the force using the formula;
Force = mass * acceleration
Force = 3.5 * 7
Force = 24.5 Newton
Answer:
807.88N/m
Explanation:
<em>The question has some missing details in it, nevertheless, based on the given data we want to find the spring constant K</em>
Step one
given data
Unstretched length = 33.5 cm
Final length of the spring = 42.0 cm
Δx= 42-33.5
Δx=8.5cm to m= 0.085m
mass m= 7kg
The force on the spring
F=mg
F= 7*9.81
F=68.67N
Step two:
From Hooke's law, we can make k subject of formula and find the spring constant k, we have
F=kΔx---------1
make k subject of the formula
k=F/Δx
k= 68.67/ 0.085
k=807.88N/m
Idkhhhhhhhhhhubvgbvcccc xzzz. Bcc bbb
Answer:
net force would be 50 N right
Explanation:
Search Results<span>Use BFS to determine the length of the shortest v-w-path. Then use DFS to find thenumber of the v-w-shortest paths such that two nodes are connected and the length of path equals to the output of BFS. But the running time of this plan is O(m+n)+O(m+n). Also I've tried to modify the Dijkstra algorithm.</span>