Answer:
C: equal to mg
Explanation:
in free-fall, gravity is always the net force on an object
Answer:
the claim is not valid or reasonable.
Explanation:
In order to test the claim we will find the maximum and actual efficiencies. maximum efficiency of a heat engine can be found as:
η(max) = 1 - T₁/T₂
where,
η(max) = maximum efficiency = ?
T₁ = Sink Temperature = 300 K
T₂ = Source Temperature = 400 K
Therefore,
η(max) = 1 - 300 K/400 K
η(max) = 0.25 = 25%
Now, we calculate the actual frequency of the engine:
η = W/Q
where,
W = Net Work = 250 KJ
Q = Heat Received = 750 KJ
Therefore,
η = 250 KJ/750 KJ
η = 0.333 = 33.3 %
η > η(max)
The actual efficiency of a heat engine can never be greater than its Carnot efficiency or the maximum efficiency.
<u>Therefore, the claim is not valid or reasonable.</u>
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
Explanation:
It is given that, Onur drops a basketball from a height of 10 m on Mars, where the acceleration due to gravity has a magnitude of 3.7 m/s².
The second equation of kinematics gives the relationship between the height reached and time taken by it.
Here, the ball is droped under the action of gravity. The value of acceleration due to gravity on Mars is positive.
We want to know how many seconds the basketball is in the air before it hits the ground. So, the formula is :
t is time taken by the ball to hit the ground
is initial speed of the ball
So, the correct option is (A).