The chemical reaction in which number of atoms of each element present in the reactant side is equal to the number of atoms of that element in product side, such reactions are said to be a balanced chemical reaction.
The chemical symbol for sodium is
.
The chemical symbol for fluorine gas is
.
The chemical symbol for sodium fluoride is 
The sodium fluoride is prepared from the reaction between sodium metal and fluorine gas can be written as:

The above reaction is not balanced as the number of fluorine atoms are not same on reactant and product side. So, in order to balance the reaction we will multiply
with 2 on reactant side and
with 2 on product side. Thus, the balanced reaction will be:

Thus, the balanced chemical equation is
.
Answer:
The most important resonance structure is 4 (attached picture). Its bon order is
or
.
Explanation:
A picture with 4 forms of the perchlorate structure is attached. The first structure has simple bonds. The second structure contains a double bond, the third structure has two double bonds and the fourth structure has three double bonds.
Formal charge = group number of the periodic table - number of bonds (number of bonding electrons / 2) - number of non-shared electrons (lone pairs)
The formal charges in the first structure is +3 in chlorine and -1 in oxygen.
The formal charges in the second structure is +2 in chlorine, -1 in oxygen and 0 in the double bond oxygen.
The formal charges in the third structure is +1 in chlorine, -1 in the single bond oxygens and 0 in the double bond oxygens.
The formal charges in the fourth structure is 0 in chlorine, -1 in the single bond oxygen and 0 in the double bond oxygens.
The most important resonance structure is given by:
- Most atoms have 0 formal charge.
- Lowest magnitude of formal charges.
- If there is a negative formal charge, it's on the most electronegative atom.
Hence, the fourth structure is the mosr important.
The bond order of the structure is:
Total number of bonds: 7
Total number of bond groups: 4
Bond order= 
Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg
Organic: sugar
inorganic: salt