The answer is D. <span> There would be a decrease in the population of marine organisms.
</span>
The quantity of matter in a body regardless of its volume or of any forces acting on it.
Answer:
true
Explanation:
it is concave when it diverging
Answer:
The line charge density is ![1.59\times10^{-4}\ C/m](https://tex.z-dn.net/?f=1.59%5Ctimes10%5E%7B-4%7D%5C%20C%2Fm)
Explanation:
Given that,
Diameter = 2.54 cm
Distance = 19.6 m
Potential difference = 115 kV
We need to calculate the line charge density
Using formula of potential difference
![V=EA](https://tex.z-dn.net/?f=V%3DEA)
![V=\dfrac{\lambda}{2\pi\epsilon_{0}r}\times\pi r^2](https://tex.z-dn.net/?f=V%3D%5Cdfrac%7B%5Clambda%7D%7B2%5Cpi%5Cepsilon_%7B0%7Dr%7D%5Ctimes%5Cpi%20r%5E2)
![\lambda=\dfrac{V\times2\epsilon_{0}}{r}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cdfrac%7BV%5Ctimes2%5Cepsilon_%7B0%7D%7D%7Br%7D)
Where, r = radius
V = potential difference
Put the value into the formula
![\lambda=\dfrac{115\times10^{3}\times2\times8.8\times10^{-12}}{1.27\times10^{-2}}](https://tex.z-dn.net/?f=%5Clambda%3D%5Cdfrac%7B115%5Ctimes10%5E%7B3%7D%5Ctimes2%5Ctimes8.8%5Ctimes10%5E%7B-12%7D%7D%7B1.27%5Ctimes10%5E%7B-2%7D%7D)
![\lambda=1.59\times10^{-4}\ C/m](https://tex.z-dn.net/?f=%5Clambda%3D1.59%5Ctimes10%5E%7B-4%7D%5C%20C%2Fm)
Hence, The line charge density is ![1.59\times10^{-4}\ C/m](https://tex.z-dn.net/?f=1.59%5Ctimes10%5E%7B-4%7D%5C%20C%2Fm)
Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ ![B = \frac{\mu_{0}i }{2\pi R}](https://tex.z-dn.net/?f=B%20%3D%20%5Cfrac%7B%5Cmu_%7B0%7Di%20%7D%7B2%5Cpi%20R%7D)
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ ![B = B_{1} + B_{2}](https://tex.z-dn.net/?f=B%20%3D%20B_%7B1%7D%20%2B%20B_%7B2%7D)
![B = \frac{\mu_{0} i}{2\pi R_{1} } + \frac{\mu_{0} i}{2\pi R_{2} }](https://tex.z-dn.net/?f=B%20%3D%20%5Cfrac%7B%5Cmu_%7B0%7D%20i%7D%7B2%5Cpi%20R_%7B1%7D%20%7D%20%2B%20%20%5Cfrac%7B%5Cmu_%7B0%7D%20i%7D%7B2%5Cpi%20R_%7B2%7D%20%7D)
![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)
![B = 5.33\times10^{-5} T](https://tex.z-dn.net/?f=B%20%3D%205.33%5Ctimes10%5E%7B-5%7D%20%20T)
Therefore, the magnitude of magnetic field at given point = ![5.33\times10^{-5} T](https://tex.z-dn.net/?f=5.33%5Ctimes10%5E%7B-5%7D%20T)