Answer:
3 units
Solution:
V=539 cubic units
Square base, with edge a=7 units
Slanted edge length: s=14 units
V=Ab h
Ab=49 square units
539 cubic units = (49 square units) h
h= 11 units
s-h=14 units-11 units
s-h=3 units
L = r x p = rmv = mr²ω
L = 0.25 x 0.75² x 12.5 = 1.758
Well, if the salt that Gerry's looking at under a powerful microscope has a crystalline structure, then that's saying that salt is technically a solid.
(I hope that this is an answer you were looking for)
Let's break the question into two parts:
1) The force needed in Ramp scenario.
2) The effort force needed in the lever scenario.
1. Ramp Scenario: In an incline, the only component of cart's weight(
mg) that is in the direction of motion is
. Therefore the effort force in this case must be equal or greater than
.
Now we need to find

.

is the angle between the incline of the ramp and the ground.
Since the height is
5m and the length of the ramp is
8m, 
would be
5/8 or 0.625. Now that you have

, mutiple it with
mg.
=> m*g*

= 20 * 10 * 5 / 8. (Taking g = 10 m/s² for simplicity) = 125N
Therefore, the minimum Effort force you would require in this case is
125N.
2. Lever Scenario:
Just apply "moment action" in this case, which is:


= ?

= mg = 20 * 10 = 200N

= 10m

= 1m
Plug-in the values in the above equation:

= 200/10=
20NAs 20N << 125N, the best choice is to use lever.
Adding an intermediate switch is not an attractive choice to span the distance between two switches due to expense issues. It may have different ports.
<h3>What is a network switch?</h3>
A switch refers to a hardware tool capable of connecting different computer devices in a network.
A network switch can connect devices on a network by centralizing communications among many devices in a given local area network.
A switch may support different speeds for transmission of data (for example, one gigabit Gbps per second).
Learn more about network switches here:
brainly.com/question/12811608