Answer:
6.30 L
Explanation:
P1 = P, V1 = 4.20 L, T1 = T
P2 = P/3, V2 = ?, T2 = T/2
Where, V2 be the final volume.
Use ideal gas equation


By substituting the values, we get
V2 = 6.30 L
First, solve for the acceleration of the car. You know the mass of the car and the braking force, so you can use the equation Force = Mass x Acceleration. This gives you 12,000 = 2,000 x A. Divide 12,000 by 2,000 to find the acceleration equal to 6 m/s^2. This is the rate that the car is slowing down at. Velocity is equal to accleration x time (rate x time), so you multiply 6 by the time of 5 seconds. This leaves you with a velocity of 30 m/s or about 67.1 mph.
<span>So we want to know which of the following is the best representation of converting potential energy into kinetic energy. The correct answer is C. A roller coaster rounds a curve to climb the next hill. So before he climbed the hill, the roller coaster had kinetic energy which he used to climb to the hill. Then the potential energy he has on the hill can again be transformed into kinetic energy when he will go down hill. </span>
It occurs as detrital grains in sedimentary rocks. It forms under extreme pressure.