Answer:
a) 0.3 m
b) r = 0.45 m
Explanation:
given,
q₁ = 0.44 n C and q₂ = 11.0 n C
assume the distance be r from q₁ where the electric field is zero.
distance of point from q₂ be equal to 1.8 -r
now,
E₁ = E₂



1.8 = 6 r
r = 0.3 m
<h3>b) zero when one charge is negative.</h3>
let us assume q₁ be negative so, distance from q₁ be r
from charge q₂ the distance of the point be 1.8 +r
now,
E₁ = E₂



1.8 =4 r
r = 0.45 m
Answer:
83.2 W/m^2
Explanation:
The radiation per unit area of a star is directly proportional to the power emitted, which is given by Stefan-Boltzmann law:

where
is the Stefan-Boltzmann constant
A is the surface area
T is the surface temperature
So, we see that the radiation per unit area is proportional to the fourth power of the temperature:

So in our problem we can write:

where
is the power per unit area of the present sun
is the temperature of the sun
is the power per unit area of sun X
is the temperature of sun X
Solving for I2, we find

Answer:
7.5 right?
Explanation: if im wrong shoot me
Because everybody in community needs to be smart & have some type of knowledge