The change in the total energy of the object is zero (0).
The given parameters:
work done by the machine, W = 50 J
mass of the object, m = 10 kg
To find:
the change in the total energy of the object
The change in the total energy of the object is the difference between the objects initial energy due to its position and the work done on the object.
Based on work energy-theory, the work done on the object is equal to the energy of the object.
- The energy of the object = work-done on the object
- The change in total energy = 50 J - 50 J = 0
Thus, the change in the total energy of the object is zero (0).
Learn more here: brainly.com/question/20377140
Answer:
This question assumes that the car accelerates at the same rate as when it went from 0 to 60km/h
24.29m/s or 87.4km/h
Explanation:
Let's find the acceleration of the car:
let vi=0, vf=60km/h (16.67m/s), Δt = 8.0s
a = (vf-vi)/Δt
a = (16.67m/s-0)/8.0
a = 2.08m/s^2
Now we can use this acceleration to find vf in the second part:
50km/h is 13.89m/s
a = (vf-vi)Δt
vf = aΔt + vi
vf = 2.08m/s^2*5.0+13.89m/s
vf = 24.29m/s (87.4km/h)
Answer:
Explanation:
First we need to determine the distance covered during deceleration. According to the equation of motion.
S = ut+1/2at²
Given:
u = 20m/s
t = 0.50s
a = -10m/s (deceleration is negative acceleration)
S = 20²+1/2(-10)(0.5)²
S = 400-5(0.5)²
S = 400-5(0.25)
S = 400-1.25
S = 398.75m
If the deer steps onto the road 35m in front of you, the distance between you and the deer when you come to a stop will be 398.75-35 = 363.75m
Answer:
T = 19.75 N
Explanation:
given,
mass of ball = 0.25 Kg
radius = 0.5 m
frequency = 2 s⁻¹
tension in the string = ?
angular velocity
ω = 2 π f
ω = 2 π x 2
ω = 12.57 rad/s
tension on the string is equal to the centripetal force
T = m ω² r
T = 0.25 x 12.57² x 0.5
T = 19.75 N
Tension in the string is equal to T = 19.75 N
A. freezing, when water turns to ice the water is turning from a liquid to a solid.