Answer:
Explanation:
Remark
In general, these 3rd class levers are very inefficient. Because the force distance is smaller than the load distance, you need to pull upward with more force that the weight of the load. So whatever the load is, the force is going to be much greater.
The distances are always measured to the pivot unless you are asked something specific otherwise.
Givens
F = ?
weight = 6N
Force Distance = F*d = 0.5 m
Weight Distance =W*d1 = 2 m
Formula
F*Fd = W*Wd
Solution
F*0.5 = 6 * 2 Divide by 0.5
F = 12/0.5
F = 24 N upwards
Answer:
a-1 Graph is attached. The relation is linear.
a-2 The corresponding height for 68 kPa Pressure is 7.54 m
a-3 The corresponding weight for 68 kPa Pressure is 1394726kg
b The original height of the column is 5.98 m
Explanation:
Part a
a-1
The graph is attached with the solution. The relation is linear as indicated by the line.
a-2
By the equation

Here
- P is the pressure which is given as 68 kPa.
- ρ is the density of the oil whose SG is 0.92. It is calculated as

- g is the gravitational constant whose value is 9.8 m/s^2
- h is the height which is to be calculated

So the height of column is 7.54m
a-3
By the relation of volume and density

Here
- ρ is the density of the oil which is 920 kg/m^3
- V is the volume of cylinder with diameter 16m calculated as follows

Mass is given as

So the mass of oil leading to 68kPa is 1394726kg
Part b
Pressure variation is given as

Now corrected pressure is as

Finding the value of height for this corrected pressure as

The original height of column is 5.98m
Option B The thickness of the central portion of a thin conveying lens can be determined very accurately by using a micrometer screw gauge.
<h3>What can be measured using a micrometer screw gauge?</h3>
One micrometer of thickness can be measured with a micron micrometre screw gauge. A Use of Micrometer Screw Gauge as like example Upon turning the screw of the micrometer screw gauge four times, a 2 mm space is covered.
<h3>What purposes does a micrometer serve?</h3>
A tool known as a micrometer is used to measure solid objects’ lengths, thicknesses, and other dimensions precisely and linearly.
<h3>What is the micrometer screw gauge’s SI unit?</h3>
The SI symbol m is also known as a micron, which is an SI-derived unit of length equaling 1106 meters, where 106 is the SI standard prefix for the prefix “micro-.” A micrometer is one-millionth of a meter.
To know more about screw gauges, visit:
brainly.com/question/4704005
#SPJ13
Answer:
Explanation:
mass m = 3 kg
spring constant be k
k x .8 = 40 N
k = 40 / .8 = 50 N /m
angular frequency ω = √ ( k / m )
= √ ( 50 / 3 )
= 4.08 rad /s
Let amplitude of oscillation be A .
1/2 k A² = 1/2 m v²
50 A² = 3 x 1²
A = .245 m = 24.5 cm
For displacement , the equation of SHM is
x = A sinωt
= 24.5 sin4.08 t
x = 24.5 sin4.08 t
Here, angle 4.08 t is in radians .
Answer:
Earth: 22.246 N
Moon: 3.71 N
Jupiter: 58.72 N
Explanation:
The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.
To calculate anything, we need to convert to standard measurements.
5.00 lbs = 2.27 kg
On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N
Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N
Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N