Answer:
.067 so C
Explanation:
I asked my sister who is in 2nd grade and she said it was right so you are good! =). have a great day!
Put the object or material on a scale to figure out<span> its mass. 3. Divide the mass by the volume to </span>figure out the density<span> (p = m / v). You may also need to know </span>how to calculate<span> the volume of a </span>solid s<span>o use the formula</span>
This question is incomplete; here is the complete question:
Marco is conducting an experiment. He knows the wave that he is working with has a wavelength of 32.4 cm. If he measures the frequency as 3 hertz, which statement about the wave is accurate?
A. The wave has traveled 32.4 cm in 3 seconds.
B. The wave has traveled 32.4 cm in 9 seconds.
C. The wave has traveled 97.2 cm in 3 seconds.
D. The wave has traveled 97.2 cm in 1 second.
The answer to this question is D. The wave has traveled 97.2 cm in 1 second.
Explanation:
The frequency of a wave, which is in this case 3 hertz, represents the number of waves that go through a point during 1 second. According to this, if the frequency of the wave is 3 hertz this means in 1 second there were 3 waves. Moreover, if you multiply the wavelength (32.4cm) by the frequency (3) you will know the distance the wave traveled in 1 second: 32.4 x 3 = 97.2 cm. This makes option D the correct one as the distance in 1 second was 97.2 cm.
Answer:
Explanation:
The horizontal component of force applied = 7.97 cos 26.2 = 7.15 N.
Vertical component in upward direction = 7.97 sin 26.2 = 3.52 N.
Since the body is moving with uniform velocity, friction force will equalize the external horizontal component = 7.15 N.
So frictional force = 7.15 N.
a) Work done by rope force per second = force in horizontal direction x displacement per second = 7.15 x 4.33 = 30.95 J
b) Increase in thermal energy per second will be due to negative work done by frictional force = work done by external force = 30.95 J.
c) Normal force acting downwards = weight - vertical component of external force = 4.36 x 9.8 - 3.52 = 39.21 N
coefficient of friction = friction force / normal force = 7.15 / 39.21 = 0.18
Answer:
The wavelength of the visible line in the hydrogen spectrum is 434 nm.
Explanation:
It is given that, the wavelength of the visible line in the hydrogen spectrum that corresponds to n₂ = 5 in the Balmer equation.
For Balmer series, the wave number is given by :

R is the Rydberg's constant
For Balmer series, n₁ = 2. So,


or

So, the wavelength of the visible line in the hydrogen spectrum is 434 nm. Hence, this is the required solution.