Centre of Mass then axis of rotation and then moment of inertia. This was the toughest question for your level... happy to help ^_^. It was purely experimental question.
Answer: false
Explanation:
Nitrogen is actually the most abundant gas in the atmosphere.
The answer to the question is false. Hope this helps you!
The atomic number is the simply the number of protons in the atom. So in the first row with atomic number 2, the number of protons is 2.
If the atom has no charge, which I think you can assume for all of these, the number of electrons is equal to the number of protons. So the number of electrons is also 2.
The number of neutrons (which are the particles with no charge in the nucleus) is simply the mass number minus the atomic number i.e. 4 - 2 = 2.
The isotopic symbol is the symbol which is found on the periodic table of elements. There are 2 numbers associated which each element on the table. The larger is the mass number and the smaller is the atomic number. The atomic number or number of protons is what identifies the element. Looking at the periodic table ( https://sciencenotes.org/wp-content/uploads/2015/01/PeriodicTableOfTheElementsBW.pdf or https://simple.wikipedia.org/wiki/Periodic_table_(big) ), it can be seen that the element on the first row above with an atomic number of 2 is Helium with a symbol He. The number that is included with the name is simply the mass number which is 4 in this case, which tells us that this type of helium has 2 neutrons.
Another type (or isotope) of helium is Helium-3 which has one neutron.
Try the next row and post back if you have trouble with it
Gravitational force between two masses is given by formula
here we know that
now from the above equation we will have
so above is the gravitational force between car and the person
Answer:
236.3 x C
Explanation:
Given:
B(0)=1.60T and B(t)=-1.60T
No. of turns 'N' =100
cross-sectional area 'A'= 1.2 x m²
Resistance 'R'= 1.3Ω
According to Faraday's law, the induced emf is given by,
ℰ=-NdΦ/dt
The current given by resistance and induced emf as
I = ℰ/R
I= -NdΦ/dtR
By converting the current to differential form(the time derivative of charge), we get
= -NdΦ/dtR
dq= -N dΦ/R
The change in the flux dФ =Ф(t)-Ф(0)
therefore, dq = (Ф(0)-Ф(t))
Also, flux is equal to the magnetic field multiplied with the area of the coil
dq = NA(B(0)-B(t))/R
dq= (100)(1.2 x )(1.6+1.6)/1.3
dq= 236.3 x C