Answer: Taking into account sound is a wave, we can use the information of the displacement (generally given as a graph) to find the wavelength and frequency, then we can calculate the speed with the formula of the speed of a wave.
Explanation:
If we have the displacement graph of the sound wave, we can find its amplitude, its wavelength and period (which is the inverse of frequency).
Now, if we additionally have the frequency as data, we can use the equation of the speed of a wave:

Where:
is the speed of the sound wave
is the wavelength
is the frequency
A) Expanding. We know this because it has a similar effect with sound. When a car goes by the pitch gets deeper and deeper. It's because you're receiving less waves. Same thing for light but instead of a pitch it's light, and the farther spread the waves - the redder, the closer and more contracted - the bluer
Answer:
<h2>2.35 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
force = 0.49 × 4.8 = 2.352
We have the final answer as
<h3>2.35 N</h3>
Hope this helps you
Answer:
B. the light will reach the front of the rocket at the same instant that it reaches the back of the rocket.
Explanation:
To an observer at rest in the rocket who can't see either sides of the rocket, the speed of the light is constant which means the distance to the front or the back is same and would appear to reach the rocket at the same time.
Although from the point of view of the person on the earth, the front of the rocket is travelling in opposite direction of the light while the back of the rocket is moving closer to the light. This means that the distance travelled by the light going forward will be longer going backwards. And since the speed of light is constant in both directions, the light will reach the back of the rocket before it reaches the front for the observer on the earth.