Answer:
The two rays, CY and DM are diverging rays and when extended behind the mirror, they appear to intersect each other at point M'. Therefore, the properties of the images formed here are formed behind the mirror, between the pole and principal focus (f), the images are diminished and are virtual and erect.
Explanation:
<h2>Spherical Mirrors</h2>
- There are two kinds of spherical mirrors, concave and convex.
- The focal point (F) of a concave mirror is the point at which a parallel beam of light is "focussed" after reflection in the mirror. ...
- The focal length (f) and radius of curvature (R) are defined in the diagram at the right.
<h3>hope it helps and thanks for following </h3><h2>please give brainliest </h2>
The correct answer is <span>D.) they are positive, they repel.
The law of charges states that; like charges repel while unlike charges attract.
</span>∴ The first conclusion we can make from the two charges is that they are like, the repel.
<span>
Magnetic field lines moves from positive to negative. In the diagram it is clear that the fields are moving from the two charges.
So therefore, the correct answer is that, the two charges are positive and they repel.</span>
Answer:
2 a) it is less dense than the water
2 b) it is more dense than the water
3 a ping pong ball is hollow and less dense than the water so it quickly bounces up to the surface of the water
Answer:
F = 5226.6 N
Explanation:
To solve a lever, the rotational equilibrium relation must be used.
We place the reference system on the fulcrum (pivot point) and assume that the positive direction is counterclockwise
F d₁ = W d₂
where F is the applied force, W is the weight to be lifted, d₁ and d₂ are the distances from the fulcrum.
In this case the length of the lever is L = 5m, t the distance desired by the fulcrum from the weight to be lifted is
d₂ = 200 cm = 2 m
therefore the distance to the applied force is
d₁ = L -d₂
d₁ = 5 -2
d₁= 3m
we clear from the equation
F = W d₂ / d₁
W = m g
F = m g d₂ / d₁
we calculate
F = 800 9.8 2/3
F = 5226.6 N
D
Because if an object is moving at a constant speed the force of friction must equal the applied (horizontal) force, and for it to be accelerating or decelerating, the force of friction and the applied force must be unequal