Answer:
25 m/s
Explanation:
Given that:
Initial speed, u = 4 m/s
Final velocity, V = 11 m/s
Time, t = 8 seconds
t2, = 16 seconds
Acceleration, a= (change in velocity) / time interval
a = (11 - 4) / 8
a = 7 / 8 = 0.875m/s²
Final velocity, v2 ;
Acceleration * t2
0.875 * 16 = 14
V2 = 14 m/s
Final speed : v + v2 = (11 + 14)m/s = 25m/s
Answer:
The object would weight 63 N on the Earth surface
Explanation:
We can use the general expression for the gravitational force between two objects to solve this problem, considering that in both cases, the mass of the Earth is the same. Notice as well that we know the gravitational force (weight) of the object at 3200 km from the Earth surface, which is (3200 + 6400 = 9600 km) from the center of the Earth:

Now, if the body is on the surface of the Earth, its weight (w) would be:

Now we can divide term by term the two equations above, to cancel out common factors and end up with a simple proportion:

The answer would be B. This is because all planets in our galaxy orbit the sun.
Answer:
Directly Proportional
Explanation:
Gravitational force can be calculated with the equation F = g(m1 * m2)/ r^2
So if we increase mass, force will also increase because mass is in the numerator.