Answer:
2452.79432 m/s
Explanation:
m = Mass of ice
= Latent heat of steam
= Specific heat of water
= Latent heat of ice
v = Velocity of ice
= Change in temperature
Amount of heat required for steam

Heat released from water at 100 °C

Heat released from water at 0 °C

Total heat released is

The kinetic energy of the bullet will balance the heat

The velocity of the ice would be 2452.79432 m/s
Distance = speed / time
speed = 95 m/s
time = 3 s
distance = 95 / 3 m
displacement = 95/3 m or 32 m (2 s.f.)