Answer:

Explanation:
<u>Accelerated Motion</u>
The acceleration of a moving body is defined as the relation of change of speed (or velocity in vector form) with the time taken. The formula is given by

Or, equivalently

Where vf and vo are the final and initial speeds respectively. The problem gives us these values: v0 = 3 m/s, vf = 1 m/s, t = 3 seconds. Computing a

The negative sing of a indicates there is deceleration or decreasing speed
Answer:
too much exposure to the sun's rays
Answer:
23. 4375 m
Explanation:
There are two parts of the rocket's motion
1 ) accelerating (assume it goes upto h1 height )
using motion equations upwards

Lets find the velocity after 2.5 seconds (V1)
V = U +at
V1 = 0 +5*2.5 = 12.5 m/s
2) motion under gravity (assume it goes upto h2 height )
now there no acceleration from the rocket. it is now subjected to the gravity
using motion equations upwards (assuming g= 10m/s² downwards)
V²= U² +2as
0 = 12.5²+2*(-10)*h2
h2 = 7.8125 m
maximum height = h1 + h2
= 15.625 + 7.8125
= 23. 4375 m
Answer:
W = 1,307 10⁶ J
Explanation:
Work is the product of force by distance, in this case it is the force of gravitational attraction between the moon (M) and the capsule (m₁)
F = G m₁ M / r²
W = ∫ F. dr
W = G m₁ M ∫ dr / r²
we integrate
W = G m₁ M (-1 / r)
We evaluate between the limits, lower r = R_ Moon and r = ∞
W = -G m₁ M (1 /∞ - 1 / R_moon)
W = G m1 M / r_moon
Body weight is
W = mg
m = W / g
The mass is constant, so we can find it with the initial data
For the capsule
m = 1000/32 = 165 / g_moon
g_moom = 165 32/1000
.g_moon = 5.28 ft / s²
I think it is easier to follow the exercise in SI system
W_capsule = 1000 pound (1 kg / 2.20 pounds)
W_capsule = 454 N
W = m_capsule g
m_capsule = W / g
m = 454 /9.8
m_capsule = 46,327 kg
Let's calculate
W = 6.67 10⁻¹¹ 46,327 7.36 10²² / 1.74 10⁶
W = 1,307 10⁶ J