Speed / time this is how you find momentum
Answer:
Displacement of Mr. Llama: Option D. 0 miles.
Explanation:
The magnitude of the displacement of an object is equal to the distance between its final position and its initial position. In other words, as long as the initial and final positions of the object stay unchanged, the path that this object took will not affect its displacement.
For Mr. Llama:
- Final position: Mr. Llama's house;
- Initial position: Mr. Llama's house.
The distance between the final and initial position of Mr. Llama is equal to zero. As a result, the magnitude of Mr. Llama's displacement in the entire process will also be equal to zero.
Answer:
Explanation:
Because we assume the pendulum is a "mathematical pendulum" (neglecting the moment of inertia of the bob), we can find:

By using the 
The mean position is the position when <em>y</em> = 0, so:
rad/s
and
in centimeters (cm).
Answer: 1m/s
Explanation: according to the law of conservation of linear momentum in an isolated system, the momentum of the gun equals that of the bullet.
Mathematically
Mb×Vb = Mg×Vg
Where Mb = mass of bullet = 1/100 = 0.01 kg
Vb = velocity of bullet = 200 m/s
Mg = mass of gun = 2kg
Vg = recoil velocity of gun =?
0.01×200 = 2×Vg
Vg = 0.01×200/2
Vg = 0.01×100
Vg = 1m/s
Answer:
a). V = 3.13*10⁶ m/s
b). T = 1.19*10^-7s
c). K.E = 2.04*10⁵
d). V = 1.02*10⁵V
Explanation:
q = +2e
M = 4.0u
r = 5.94cm = 0.0594m
B = 1.10T
1u = 1.67 * 10^-27kg
M = 4.0 * 1.67*10^-27 = 6.68*10^-27kg
a). Centripetal force = magnetic force
Mv / r = qB
V = qBr / m
V = [(2 * 1.60*10^-19) * 1.10 * 0.0594] / 6.68*10^-27
V = 2.09088 * 10^-20 / 6.68 * 10^-27
V = 3.13*10⁶ m/s
b). Period of revolution.
T = 2Πr / v
T = (2*π*0.0594) / 3.13*10⁶
T = 1.19*10⁻⁷s
c). kinetic energy = ½mv²
K.E = ½ * 6.68*10^-27 * (3.13*10⁶)²
K.E = 3.27*10^-14J
1ev = 1.60*10^-19J
xeV = 3.27*10^-14J
X = 2.04*10⁵eV
K.E = 2.04*10⁵eV
d). K.E = qV
V = K / q
V = 2.04*10⁵ / (2eV).....2e-
V = 1.02*10⁵V