Answer:
5.59x10^-3 moles
Explanation:
The balanced equation for the reaction is given below:
HCl + KOH —> KCl + H2O
Now we can obtain the number of mole of HCl required to produce 5.59x10^-3 moles of KCl as follow:
From the balanced equation above, 1 mole of HCl produced 1 mole of KCl.
Therefore, 5.59x10^-3 moles of HCl will also produce 5.59x10^-3 moles of KCl.
From the illustration made above, we can see evidently that 5.59x10^-3 moles of HCl is required to produce 5.59x10^-3 moles of KCl
Here is your answer:
Theirs 12 protons, 12 electrons, and 14 neutrons!
Reason: When you look at the atomic number for any element on the table with all of the elements that's how many protons, and electrons their are in the substance (or element) you find how many neutrons by rounding the number under the atomic number which will equal 14!
Your answer is 12:12:14
For a neutralisation reaction...
Acid + base 》 salt + water....
The above reaction looks much alike so is a neutralisation...
It is certainly not compustion as no oxygen to react and CO2 produced
Answer:
Sample response:
The costs of using both renewable and nonrenewable resources depend on the extent of the use. If renewable resources are managed wisely, the use of the resource will not exceed the rate at which it is replenished. In this instance the cost of using renewable resources can be minimized, if not entirely eliminated. The cost of using nonrenewable resources is harder to minimize because nonrenewable resources cannot be replenished at the rate at which they are used. The environmental impact of using nonrenewable resources such as fossil fuels is greater than just the loss of the resource itself. Other impacts such as acid rain, global warming, and atmospheric pollution can result from the use of nonrenewable resources.
Explanation:
2021 edge
have a nice day
Answer:
A heatwave occurs when a system of high atmospheric pressure moves into an area and lasts two or more days.
Explanation:
In such a high-pressure system, air from upper levels of our atmosphere is pulled toward the ground, where it becomes compressed and increases in temperature.