The formula for Silver (I) chloride is: AgCl
Place the mixture in hot water and stir well.
<span>The KNO3 is very soluble in hot water. </span>
<span>Use a fine filter paper and filter off the sand. </span>
<span>The sand will be separated from the KNO3 solution. </span>
<span>The water can now be evaporated from the solution by further, gentle heating leaving the solid in the container.</span>
Answer:
148 g
Explanation:
Step 1: Write the balanced equation for the decomposition of sodium azide
2 NaN₃ ⇒ 2 Na + 3 N₂
Step 2: Calculate the moles corresponding to 95.8 g of N₂
The molar mass of N₂ is 28.01 g/mol.
95.8 g × 1 mol/28.01 g = 3.42 mol
Step 3: Calculate the moles of NaN₃ needed to form 3.42 moles of N₂
The molar ratio of NaN₃ to N₂ is 2:3. The moles of NaN₃ needed are 2/3 × 3.42 mol = 2.28 mol.
Step 4: Calculate the mass corresponding to 2.28 moles of NaN₃
The molar mass of NaN₃ is 65.01 g/mol.
2.28 mol × 65.01 g/mol = 148 g
Answer:
A. Soil erosion will increase.
"High-intensity" storms produce larger drops that fall faster than those of "low-intensity"storms and therefore have greater ability to destroy and dislodge particles from the soil matrix.
Hope that helped :)