1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
11

What is the amount of thermal energy needed to make 5 kg of ice at - 10 °C to

Physics
1 answer:
agasfer [191]3 years ago
7 0

Answer:

The amount of thermal energy needed is 15167500 joules.

Explanation:

By First Law of Thermodynamics, we see that amount of thermal energy (Q), in joules, is equal to the change in internal energy. From statement we understand that change in internal energy consisting in two latent components (U_{l,ice}, U_{l,steam}), in joules, and two sensible component (U_{s,w}), in joules, that is:

Q = U_{l,ice} + U_{s, w} + U_{s,ice} + U_{l,steam} (1)

By definitions of Sensible and Latent Heat, we expanded the formula:

Q = m\cdot (h_{f,w}+h_{v,w}+c_{ice}\cdot \Delta T_{ice}+c_{w}\cdot \Delta T_{w}) (2)

Where:

m - Mass, in kilograms.

h_{f,w} - Latent heat of fussion of water, in joules per kilogram.

h_{v,w} - Latent heat of vaporization of water, in joules per kilogram.

c_{ice} - Specific heat of ice, in joules per kilogram per degree Celsius.

c_{w} - Specific heat of water, in joules per kilogram per degree Celsius.

\Delta T_{ice} - Change in temperature of ice, measured in degrees Celsius.

\Delta T_{w} - Change in temperature of water, measured in degrees Celsius.

If we know that m = 5\,kg, h_{f,w} = 3.34\times 10^{5}\,\frac{J}{kg}, h_{v,w} = 2.26\times 10^{6}\,\frac{J}{kg}, c_{ice} = 2.090\times 10^{3}\,\frac{J}{kg\cdot ^{\circ}C}, c_{w} = 4.186\times 10^{3}\,\frac{J}{kg\cdot ^{\circ}C}, \Delta T_{ice} = 10\,^{\circ}C and \Delta T_{w} = 100\,^{\circ}C, then the amount of thermal energy is:

Q = 15167500\,J

The amount of thermal energy needed is 15167500 joules.

You might be interested in
An electron is accelerated through 2400 V from rest and then enters a region in which there is a uniform 1.70 T magnetic field.
aalyn [17]

Answer:

Explanation:

Let v be the velocity acquired by electron in electric field

V q = 1/2 m v²

V is potential difference applied on charge q , m is mass of charge , v is velocity acquired

2400 x 1.6 x 10⁻¹⁹ = .5 x 9.1 x 10⁻³¹ x v²

v² = 844 x 10¹²

v = 29.05 x 10⁶ m /s

Maximum force will be exerted on moving electron when it moves perpendicular to magnetic field .

Maximum force = Bqv , where B is magnetic field , q is charge on electron and v is velocity of electron

= 1.7 x 1.6 x 10⁻¹⁹ x 29.05 x 10⁶

= 79.02 x 10⁻¹³ N .

Minimum force will be zero when electron moves along the direction of magnetic field .

5 0
3 years ago
A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave
Ratling [72]

A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave A radio station broadcasts its programmes at a wavelength of 500 m. Find the frequency of the radiowaves transmitted by the radio station, if the speed of radiowaves in air is 3 x 108 m/s. Ans: 6 x 10 Hz

<h3>What is radio station ?</h3>

Radio broadcasting is the act of sending audio (sound), occasionally together with accompanying metadata, across radio waves to radio receivers used by the general public. Unlike satellite radio, which uses a satellite in Earth's orbit, terrestrial radio broadcasting uses a land-based radio station to transmit radio waves. The listener needs a broadcast radio receiver to hear the material (radio). A radio network with which stations frequently have affiliations provide content in a standard radio format, whether through broadcast syndication, simulcasting, or both. Radio stations use a variety of modulations to transmit their signals, including FM (frequency modulation), which is an older analog audio standard, and AM (amplitude modulation).

To learn more about radio station from the given link:

brainly.com/question/26439029

#SPJ4

3 0
2 years ago
A 15 kg box is sliding down an incline of 35 degrees. The incline has a coefficient of friction of 0.25. If the box starts at re
valina [46]

The box has 3 forces acting on it:

• its own weight (magnitude <em>w</em>, pointing downward)

• the normal force of the incline on the box (mag. <em>n</em>, pointing upward perpendicular to the incline)

• friction (mag. <em>f</em>, opposing the box's slide down the incline and parallel to the incline)

Decompose each force into components acting parallel or perpendicular to the incline. (Consult the attached free body diagram.) The normal and friction forces are ready to be used, so that just leaves the weight. If we take the direction in which the box is sliding to be the positive parallel direction, then by Newton's second law, we have

• net parallel force:

∑ <em>F</em> = -<em>f</em> + <em>w</em> sin(35°) = <em>m a</em>

• net perpendicular force:

∑<em> F</em> = <em>n</em> - <em>w</em> cos(35°) = 0

Solve the net perpendicular force equation for the normal force:

<em>n</em> = <em>w</em> cos(35°)

<em>n</em> = (15 kg) (9.8 m/s²) cos(35°)

<em>n</em> ≈ 120 N

Solve for the mag. of friction:

<em>f</em> = <em>µ</em> <em>n</em>

<em>f</em> = 0.25 (120 N)

<em>f</em> ≈ 30 N

Solve the net parallel force equation for the acceleration:

-30 N + (15 kg) (9.8 m/s²) sin(35°) = (15 kg) <em>a</em>

<em>a</em> ≈ (54.3157 N) / (15 kg)

<em>a</em> ≈ 3.6 m/s²

Now solve for the block's speed <em>v</em> given that it starts at rest, with <em>v</em>₀ = 0, and slides down the incline a distance of ∆<em>x</em> = 3 m:

<em>v</em>² - <em>v</em>₀² = 2 <em>a</em> ∆<em>x</em>

<em>v</em>² = 2 (3.6 m/s²) (3 m)

<em>v</em> = √(21.7263 m²/s²)

<em>v</em> ≈ 4.7 m/s

4 0
3 years ago
Chemical properties of an acid include...
Cerrena [4.2K]

and C. corrosive, increases the concentration of hydrogen ions when added to water, forms hydrogen gas when it comes in contact with a metal, and formssalt and water when added to a base.

5 0
3 years ago
Carbon dioxide in the blood is removed from the body through the A. kidneys B. lungs C. mouth D. skin​
natka813 [3]

Answer:

<h2>C) Mouth</h2>

Explanation:

<h2>When we inhale air, it contains oxygen. The lungs take in oxygen and the heart and the other body parts use it.</h2><h2>Carbon dioxide is removed from the blood mouth when we exhale.</h2>
8 0
3 years ago
Other questions:
  • A mobile phone is pulled northward by a force of 10 n and at the same time pulled southward by another force of 15 n. the result
    15·1 answer
  • A rifle bullet with a mass of 11.5 g traveling toward the right at 251 m/s strikes a large bag of sand and penetrates it to a de
    14·1 answer
  • Starting from a state of no rotation, a cylinder spins so that any point on its edge has a contant tangential acceleration of 3.
    14·1 answer
  • How much work in joules must be done to stop a 920-kg car traveling at 90 km/h?
    12·1 answer
  • How many calories is required to raise the temp from 11to 23?
    15·1 answer
  • The points plotted on a graph represent the actual data recorded by an experiment.
    11·2 answers
  • What type of heat transfer is happening when the sun warms your face
    11·2 answers
  • A proton has been accelerated from rest through a potential difference of -1350 V. What is the proton's kinetic energy, in elect
    11·1 answer
  • What are the reactants in the photosynthesis chemical equation?
    10·1 answer
  • How can you find the area of a regular room?​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!