The release of free energy drives the spontaneous reaction.
Spontaneity can be <span>determined
using the change in </span>Gibbs free energy
(the thermodynamic potencial):
delta G=delta H – T*delta
S
where delta H is the enthalpy and delta S is the entropy.
The direction (the sign) of delta G depends of the changes
of enthalpy and entropy. If delta G is negative then the process is
spontaneous.
In our case, both delta H and delta S are negative values, the
process as said is spontaneous which means that it may proceed in the forward
direction.
It's true IF ' m ' stands for mass and ' v ' stands for acceleration. Otherwise it's false.
The momentum of an object is given by the product between its mass and its velocity:

where m is the mass and v the velocity.
For the object in our problem, m=10 kg and v=10 m/s, therefore its momentum is

So, the correct answer is B).
Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
Combine all of the x's on one side of the equation and then finish the problem!