Answer:
M₂ = M then L₂ = L
M₂> M then L₂ = \frac{M}{M_{2}} L
Explanation:
This is a static equilibrium exercise, to solve it we must fix a reference system at the turning point, generally in the center of the rod. By convention counterclockwise turns are considered positive
∑ τ = 0
The mass of the rock is M and placed at a distance, L the mass of the rod M₁, is considered to be placed in its center of mass, which by uniform e is in its geometric center (x = 0) and the triangular mass M₂, with a distance L₂
The triangular shape of the second object determines that its mass can be considered concentrated in its geometric center (median) that tapers with a vertical line if the triangle is equilateral, the most used shape in measurements.
M L + M₁ 0 - m₂ L₂ = 0
M L - m₂ L₂ = 0
L₂ =
L
From this answer we have several possibilities
* if the two masses are equal then L₂ = L
* If the masses are different, with M₂> M then L₂ = \frac{M}{M_{2}} L
Answer:
The time is 0.5 sec.
Explanation:
Given that,
Voltage V= 12.00 V
Inductance L= 1.20 H
Current = 3.00 A
Increases rate = 8.00 A
We need to calculate change in current

We need to calculate the time interval
Using formula of inductor


Where,
= change in current
V = voltage
L = inductance
Put the value into the formula


Hence, The time is 0.5 sec.
Answer:
F=m*g is the formula and the answer is 19,620 kg
Explanation:
Since the formula is F=m*g and Earth's gravity is 9.81 m/s^2 all you need to do is multiply 2,000 by 9.81
Answer:
0.8 x 10^-9 kg
Explanation:
Given,
Distance ( R ) = 10 m
Force ( F ) = 3.2 x 10^-9 N
Mass ( m1 ) = 40 kg
To find : Mass ( m2 ) = ?
Formula : -
F = m1.m2 / R^2
m2 = FR^2 / m1
= 3.2 x 10^-9 x 10 / 40
= 3.2 x 10^-9 / 4
= ( 3.2 / 4 ) x 10^-9
m2 = 0.8 x 10^-9 kg
Meters it the SI unit for measuring length.