From Boyle's law, the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
Therefore; P1V1 =P2V2; where PV is a constant
hence; 12 × 6 = 3× p2
p2 = 72/3
= 24 atm
Therefore; the new pressure will be 24 atm
To answer this question, first we take note that the maximum height that can be reached by an object thrown straight up at a certain speed is calculated through the equation,
Hmax = v²sin²θ/2g
where v is the velocity, θ is the angle (in this case, 90°) and g is the gravitational constant. Since all are known except for v, we can then solve for v whichi s the initial velocity of the projectile.
Once we have the value of v, we multiply this by the total time traveled by the projectile to solve for the value of the range (that is the total horizontal distance).
The net force acting on the airplane is 25N.
Forces acting on the paper airplane when it is in the air:
- The forward force generated by the engine, propeller, or rotor is called thrust. It resists or defeats the drag force. It operates generally perpendicular to the longitudinal axis. However, as will be discussed later, this is not always the case.
- Drag is an airflow disruption generated by the wing, rotor, fuselage, and other projecting surfaces that causes a backward, decelerating force. Drag acts backward and perpendicular to the relative wind, opposing thrust.
- Weight is the total load carried by airplane, including the weight of the crew, fuel, and any cargo or baggage. Due to the influence of gravity, weight pulls the airplane downward.
- Lift—acts perpendicular to the flight path through the center of lift and opposes the weight's downward force. It is produced by the air's dynamic influence on the airfoil.
Given.
Weight of the paper airplane, F1 = 16N
The force of air resistance, F2 = 9N
Net force = F1 + F2
Net force = 25N
Thus, the net force acting on the airplane is 25N.
Learn more about the net force here:
brainly.com/question/18109210
#SPJ1
Answer:
D. echolocation
<h2>
<em><u>Ple</u></em><em><u>ase</u></em><em><u> mark</u></em><em><u> my</u></em><em><u> answer</u></em><em><u> the</u></em><em><u> brainliest</u></em><em><u> and</u></em><em><u> rate</u></em><em><u> me</u></em><em><u> 5</u></em><em><u> star</u></em><em><u> and</u></em><em><u> follow</u></em><em><u> me</u></em><em><u> </u></em></h2>
<em><u>pl</u></em><em><u>ease</u></em><em><u> </u></em><em><u>please</u></em><em><u> please</u></em><em><u> please</u></em><em><u> please</u></em><em><u> please</u></em>
Trade winds near equator blows in curve path instead of straight path. This is because of earth rotation. This effect of earth rotation that cause wind to move in curve motion is called Coriolis effect. These kind of wind blows at the northeast of the North hemisphere and southeast of the South hemisphere. The trade wind are warm and it blows due to rising of hot air from equator.