<span>A hypothesis is testable when you can create an experiment to study the proposition contained within the hypothesis. For example, the hypothesis ‘Santa travels slower than a unicorn’ is testable in theory by measuring the speeds of both, but it is not truly testable because neither exists in reality.</span>
Answer:
13,750 N
Yes
Explanation:
Given:
v₀ = 90 km/h = 25 m/s
v = 0 m/s
t = 4 s
Find: a and Δx
a = Δv / Δt
a = (0 m/s − 25 m/s) / (4 s)
a = -6.25 m/s²
F = ma
F = (2200 kg) (-6.25 m/s²)
F = -13,750 N
Δx = ½ (v + v₀) t
Δx = ½ (0 m/s + 25 m/s) (4 s)
Δx = 50 m
A: Some physical properties change, but the substance keeps its identity.
Answer:
2.145×10^-10 V or 0.2145nV
Explanation:
From hf=eV
h= Plank's constant = 6.6×10^-34JS
f= frequency of the electromagnetic wave = 5.2×10^4 Hz
e= electronic charge= 1.6×10^-19 C
V= voltage
V= hf/e
V= 6.6×10^-34JS × 5.2×10^4 Hz/ 1.6×10^-19 C
V= 2.145×10^-10 V or 0.2145nV
Therefore the voltage created is 2.145×10^-10 V or 0.2145nV
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules