Answer:
Explain step by step
Explanation:
Collisions with asteroids, comets and other stuff from space have been responsible for huge landmarks in our planet’s history: global shifts in climate, the creation of our moon, the reshuffling of our deepest geology, and the extinction of species.
Asteroid threats pop up in the news every now and then, but the buzz tends to fizzle away as the projectiles pass us by. Other times, as with the 2013 Chelyabinsk meteor in Russia, we don’t know they’re here until they’re here.
Perhaps most useful to remember is that when near-Earth objects (including asteroids, comets and meteoroids) enter the atmosphere, they’re called meteors; and if there’s anything left when they hit the ground, the resulting object is called a meteorite. We tend to focus on asteroids when talking about potential collisions, because they’re more likely to hit us than other stuff like comets, but still big enough to pose a threat.
Answer:
Momentum is 100 kg.m/s
Explanation:
given
mass, m = 5 kg
velocity, v = 20 m/s
To find : momentum (P)
We know that momentum is given by equation:
p = mv
= 5 kg x 20 m/s
= 100 kg.m/s
Answer:
a)
Y0 = 0 m
Vy0 = 15 m/s
ay = -9.81 m/s^2
b) 7.71 m
c) 3.06 s
Explanation:
The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards
Y(0) = 0 m
Vy(0) = 15 m/s
ay = -9.81 m/s^2 (negative because it points down)
Since acceleration is constant we can use the equation for uniformly accelerated movement:
Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2
To find the highest point we do the first time derivative (this is the speed:
V(t) = Vy0 + a * t
We equate this to zero
0 = Vy0 + a * t
0 = 15 - 9.81 * t
15 = 9.81 * t
t = 0.654 s
At this time it will have a height of:
Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m
The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.
0 = Y0 + Vy0 * t + 1/2 * a * t^2
0 = 0 + 15 * t - 1/2 * 9.81 t^2
0 = 15 * t - 4.9 * t^2
0 = t * (15 - 4.9 * t)
t1 = 0 This is the moment it jumped into the air
0 = 15 - 4.9 * t2
15 = 4.9 * t2
t2 = 3.06 s This is the moment when it falls again.
3.06 - 0 = 3.06 s
Answer:
L= 12 light years
Explanation:
for length dilation we use the formula

now calculating Lo
Lo = 12.5×365×24×3600×3×10^8
= 1.183×10^17 m
now putting the values of v and Lo in the above equation we get

= 1.136×10^17 m
L=
m
so L= 12 light years
Answer: Dark matter.
Explanation: Hope it helps :)