protons and electrons are both always the atomic number which is 9 in this case.
For neutrons you subtract the atomic number (9) from the weight of the atom (18.998) some teachers will want you to round to the nearest whole (19). We do this because the number of protons is the atomic number so if you subtract the protons from the whole weight of the atom you would have the electrons and neutrons left. Since electrons weigh so little we don't have to subtract them. Weighing neutrons and electrons would be like weighing an elephant (neutrons) and then putting one marshmallow on the scale (electron).
The RMS of O2 at 17 degrees is calculated as follows
RMs= ( 3RT/m)^1/2 where
R= ideal gas constant = 8.314
T= temperature= 17+273= 290 K
M= molar mass in KG = 32/1000= 0.032 Kg
Rms is therefore= sqrt (3x 8.314 x290/0.032 ) = sqrt( 226036.875
RMs=475.43
Answer:
1. 58.5g/mol
2. 261g/mol
3. 158g/mol
4. 71g/mol
5. 44g/mol
Explanation:
The molar mass of a compound is the total mass of the sum of masses of all individual elements that make up the compound. First, we need to know the atomic masses of each element in a compound.
1. NaCl
Where; Na = 23, and Cl = 35.5
Molar mass of NaCl = 23 + 35.5
= 58.5g/mol
2. Ba(NO3)2:
Where; Ba = 137, N = 14, O = 16
Molar mass of Ba(NO3)2: 137 + {14 + 16(3)} 2
137 + (14 + 48)2
137 + (62)2
137 + 124
= 261g/mol
3. K(MnO4)
Where; K = 39, Mn = 55, O = 16
Molar mass of KMnO4 = 39 + 55 + 16(4)
= 94 + 64
= 158g/mol
4. Cl2
Where; Cl = 35.5
Molar mass of Cl2 = 35.5(2)
= 71g/mol
5. CO2
Where; C = 12, O = 16
Molar Mass of CO2 = 12 + 16(2)
= 12 + 32
= 44g/mol
your answer is 0.00833M the volume was converted into liters
NaOH(aq)+HCl(aq)→NaCl(aq)+H2O(l)
Using the molarity equation, we can find the number of moles of HCl that reacted:
molarity=mol soluteL soln
mol solute=(molarity)(L soln)
mol HCl=(0.105molL)(0.0250L)=0.00263 mol HCl
(volume converted to liters)
Now, using the coefficients of the chemical reaction, we can determine the number of moles of NaOH that reacted:
0.00263mol HCl(1lmol NaOH1mol HCl)=0.00263 mol NaOH
Lastly, we'll use the molarity equation (using given volume of NaOH soln) again to determine the molarity of the sodium hydroxide solution:
molarity=mol soluteL soln