Its 2544.766983
I just used my calculator :)
The confidence interval is given by the formula:
m +/- z·(σ/√n)
First, compute the mean:
m = (<span>15.8 + 15.6 + 15.1 + 15.2 + 15.1 + 15.5 + 15.9 + 15.5) / 8
= 15.463
Then, compute the standard deviation:
</span>σ = √[∑(v - m)²/n]
= 0.287
The z-score for a 95% confidence interval is z = 1.96.
Now you can calculate:
m + z·(σ/√n) = 15.463 + 1.96·(0.287/√8)
= 15.463 + 0.199
= 15.662
m - z·(σ/√n) = 15.463 - 1.96·(0.287/√8)
= 15.463 - 0.199
= 15.264
Therefore the confidence interval is (15.264, <span>15.662) and the correct answer is E) none of the above.</span>
Answer:
5536 calculators
Step-by-step explanation:
We integrate the function dx/dt to obtain the number of new calculators between beginning of the 3rd week and end of week 4. Note that beginning of 3rd week is the same as end of 2nd week. So,
=
Let u = t + 12, then
= 1. So, du = dt. We also change the limits of our integration. So, when t = 2, u = 2 + 12 = 14 and when t = 4, u = 4 + 12 = 16
Then
= ∫₁₄¹⁶
₁₄¹⁶ = ![5000[16 + \frac{100}{16} - (14 + \frac{100}{14} )] = 5000 [16 - 14 + \frac{100}{16} - \frac{100}{14} ] = 5000 [2 + \frac{100}{16} - \frac{100}{14} ] = 5535.7](https://tex.z-dn.net/?f=5000%5B16%20%2B%20%5Cfrac%7B100%7D%7B16%7D%20-%20%2814%20%2B%20%5Cfrac%7B100%7D%7B14%7D%20%29%5D%20%3D%205000%20%5B16%20-%2014%20%2B%20%5Cfrac%7B100%7D%7B16%7D%20-%20%5Cfrac%7B100%7D%7B14%7D%20%20%5D%20%3D%205000%20%5B2%20%2B%20%5Cfrac%7B100%7D%7B16%7D%20-%20%5Cfrac%7B100%7D%7B14%7D%20%20%5D%20%3D%205535.7)
≈ 5536 calculators
Answer:
C
Step-by-step explanation:
b is the y value of the equation.
8a = -3b - 5 Let b = - 7
8a = -3*-7 - 5 Combine
8a = 21 - 5 Combine the right again.
8a = 16 Divide by 8
8a/8 = 16/8
a = 2