Answer:
Speed = 0.296m/2
Period = 0.203 s
Explanation:
If by 'long' you mean the wavelength of the waves, then the wavelength
.
The frequency
of the waves is 14.8 waves every 3 seconds or
.
Now the relationship between wavelength
, frequency
and speed
of the waves is:

We put in the values
and
and get:
Now the period
is just the inverse of the frequency, or


Heat
required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
Heat = 1 kg (4.18 kJ / kg C)( 1 C)
<span>Heat = 4.18 kJ energy needed</span></span>
Answer:
The coil radius of other generator is 5.15 cm
Explanation:
Consider the equation for induced emf in a generator coil:
EMF = NBAω Sin(ωt)
where,
N = No. of turns in coil
B = magnetic field
A = Cross-sectional area of coil = π r²
ω = angular velocity
t = time
It is given that for both the coils magnetic field, no. of turn and frequency is same. Since, the frequency is same, therefore, the angular velocity, will also be same. As, ω = 2πft.
Therefore, EMF for both coils or generators will be:
EMF₁ = NBπr₁²ω Sin(ωt)
EMF₂ = NBπr₂²ω Sin(ωt)
dividing both the equations:
EMF₁/EMF₂ = (r₁/r₂)²
r₂ = r₁ √(EMF₂/EMF₁)
where,
EMF₁ = 1.8 V
EMF₂ = 3.9 V
r₁ = 3.5 cm
r₂ = ?
Therefore,
r₂ = (3.5 cm)√(3.9 V/1.8 V)
<u>r₂ = 5.15 cm</u>
Answer:
Force's magnitude
Direction: down (towards the center of the Earth)
Explanation:
Recall that the magnetic force on a conductor of length L carrying a current I in a magnetic field B is given by the equation:
in the case the magnetic field B and the direction of the current are at 90 degrees from each other (which is our case). The direction of the force will be given by the "right hand rule" associated with the vector product that defines this force.
Since the current is moving East, and the magnetic field of the Earth goes from North to South, the resultant Force vector will be pointing towards the Earth (and perpendicular to the plane defined by the current's direction and the magnetic field B)
The magnitude of the force, is given by the formula above, and given that all quantities to be considered are is SI units, it will result in Newtons (N):

The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4