The formation of aspirin will proceed faster if acetic anhydride is used in place of acetic acid.
However, acetic anhydride will hydrolyze in the presence of water to form acetic acid, slowing down the reaction.
(p1)(V1)/(T1) = (p2)(V2)/(T2)
(1.00 atm)(V) / (273 + 25K) = (40.0 atm)(V/10) / (273 + T)
273 + T = (40.0)(1/10)(273 + 25K) / (1.00)
T = 919°C
The way you calculate the empirical formula is to firstly assume 100g. To find each elements moles you take each elements percentage listed, times it by one mole and divide it by its atomic mass. (ex: moles of K =55.3g x 1 mole/39.1g, therefore there is 1.41432225 moles of Potassium) Once you’ve completed this for every element you list each elements symbol beside it’s number of moles and divide by the smallest number because it can only go into its self once. After you’ve done this, you’ve found your empirical formula, which is the simplest whole number ratio of atoms in a compound. I’ve added an example of a empirical question I completed last semester :)
Answer:
Phosphorus is more electronegative than hydrogen
Explanation:
Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons towards itself thereby making a molecule to be polar. The Pauling scale is the most commonly used to measure electronegativity. Fluorine (the most electronegative element) is assigned a value of 4.0 on the Pauling's scale, and values range down to caesium and francium which are the least electronegative elements.
Electronegativity increases from left to right across the periodic table (across the period) hence, phosphorus is far more electronegative than hydrogen. Being more electronegative than hydrogen, phosphorus attracts the bonding electron pair of the P-H bond closer to itself than hydrogen. Since the electrons of the bond are closer to phosphorus than hydrogen, the phosphorus atom acquires a partial negative charge while the hydrogen atom acquires a partial positive charge.
Answer:
it has six significant figures