Answer:
A. percentage mass of iron = 5.17%
percentage mass of sand = 8.62%
percentage mass of water = 86.205%
B. (Iron + sand + water) -------> ( iron + sand) ------> sand
C. The step of separation of iron and sand
Explanation:
A. Percentage mass of the mixtures:
Total mass of mixture = (15.0 + 25.0 + 250.0) g =290.0 g
percentage mass of iron = 15/290 * 100% = 5.17%
percentage mass of sand = 25/290 * 100% = 8.62%
percentage mass of water = 250/290 * 100% = 86.205%
B. Flow chart of separation procedure
(Iron + sand + water) -------> separation by filtration using filter paper and funnel to remove water --------> ( iron + sand) -----------> separation using magnet to remove iron ------> sand
C. The step of separation of iron and sand by magnetization of iron will have the highest amount of error because during the process, some iron particles may not readily be attracted to the magnet as they may have become interlaced in-between sand grains. Also, some sand particle may also be attracted to the magnet as they are are borne on iron particles.
Answer:
Ammonia gas(an alkaline gas with characteristics of choking or irritating smell) is not liberated when 6mole of HCl is added to the solution instead of 6mole of NaOH, to test for the presence of ammonium ion in the solution
Explanation:
As expected, when testing for ammonium ion in a solution (precisely ammonium salt solution), Sodium Hydroxide (NaOH) is required as the test reagent.
When NaOH is added to the solution, A gas with characteristics of choking or irritating smell is liberated.
This gas turn red litmus paper blue.
This liberated gas is an alkaline gas, which is confirmed as an ammonia gas(NH3).
If HCl is added instead of NaOH, the ammonia gas will not be liberated, which indicates that the test reagent used is wrong.
Answer:

Explanation:
Hello!
In this case, since the equation for the ideal gas is:

For each gas, given the total volume, temperature (28.1+273.15=301.25K) and moles, we can easily compute the partial pressure as shown below:

Best regards!