<u>Answer:</u>
<u>For a:</u> The value of
for the given reaction is 271.6
<u>For b:</u> The value of
for the reaction is 6.32
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
.....(1)
- <u>For
:</u>
Given mass of
= 0.105 g
Molar mass of
= 208.24 g/mol
Putting values in equation 1, we get:
![\text{Moles of }PCl_5=\frac{0.105g}{208.24g/mol}=5.04\times 10^{-4}mol](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DPCl_5%3D%5Cfrac%7B0.105g%7D%7B208.24g%2Fmol%7D%3D5.04%5Ctimes%2010%5E%7B-4%7Dmol)
- <u>For
:</u>
Given mass of
= 0.220 g
Molar mass of
= 137.33 g/mol
Putting values in equation 1, we get:
![\text{Moles of }PCl_3=\frac{0.220g}{137.33g/mol}=1.60\times 10^{-3}mol](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DPCl_3%3D%5Cfrac%7B0.220g%7D%7B137.33g%2Fmol%7D%3D1.60%5Ctimes%2010%5E%7B-3%7Dmol)
- <u>For
:</u>
Given mass of
= 2.12 g
Molar mass of
= 71.0 g/mol
Putting values in equation 1, we get:
![\text{Moles of }Cl_2=\frac{2.12g}{71.0g/mol}=0.029mol](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20%7DCl_2%3D%5Cfrac%7B2.12g%7D%7B71.0g%2Fmol%7D%3D0.029mol)
Volume of the flask = 25.0 L
For the given chemical equation:
![PCl_3(g)+Cl_2(g)\rightleftharpoons PCl_5(g)](https://tex.z-dn.net/?f=PCl_3%28g%29%2BCl_2%28g%29%5Crightleftharpoons%20PCl_5%28g%29)
The equation used to calculate concentration of a solution is:
![\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}](https://tex.z-dn.net/?f=%5Ctext%7BMolarity%7D%3D%5Cfrac%7B%5Ctext%7BMoles%7D%7D%7B%5Ctext%7BVolume%20%28in%20L%29%7D%7D)
The expression of
for above reaction follows:
![K_c=\frac{PCl_5}{PCl_3\times Cl_2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7BPCl_5%7D%7BPCl_3%5Ctimes%20Cl_2%7D)
We are given:
![[PCl_5]=\frac{5.04\times 10^{-4}mol}{25L}](https://tex.z-dn.net/?f=%5BPCl_5%5D%3D%5Cfrac%7B5.04%5Ctimes%2010%5E%7B-4%7Dmol%7D%7B25L%7D)
![[PCl_3]=\frac{1.60\times 10^{-3}mol}{25L}](https://tex.z-dn.net/?f=%5BPCl_3%5D%3D%5Cfrac%7B1.60%5Ctimes%2010%5E%7B-3%7Dmol%7D%7B25L%7D)
![[Cl_2]=\frac{0.029mol}{25L}](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%5Cfrac%7B0.029mol%7D%7B25L%7D)
Putting values in above equation, we get:
![K_c=\frac{(\frac{5.04\times 10^{-4}}{25})}{(\frac{1.60\times 10^{-3}}{25})\times (\frac{0.029}{25})}\\\\K_c=271.6](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%28%5Cfrac%7B5.04%5Ctimes%2010%5E%7B-4%7D%7D%7B25%7D%29%7D%7B%28%5Cfrac%7B1.60%5Ctimes%2010%5E%7B-3%7D%7D%7B25%7D%29%5Ctimes%20%28%5Cfrac%7B0.029%7D%7B25%7D%29%7D%5C%5C%5C%5CK_c%3D271.6)
Hence, the value of
for the given reaction is 271.6
Relation of
with
is given by the formula:
![K_p=K_c(RT)^{\Delta ng}](https://tex.z-dn.net/?f=K_p%3DK_c%28RT%29%5E%7B%5CDelta%20ng%7D)
where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 271.6
R = Gas constant = ![0.0821\text{ L atm }mol^{-1}K^{-1}](https://tex.z-dn.net/?f=0.0821%5Ctext%7B%20L%20atm%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D)
T = temperature = ![250^oC=250+273=523K](https://tex.z-dn.net/?f=250%5EoC%3D250%2B273%3D523K)
= change in number of moles of gas particles = ![n_{products}-n_{reactants}=1-2=-1](https://tex.z-dn.net/?f=n_%7Bproducts%7D-n_%7Breactants%7D%3D1-2%3D-1)
Putting values in above equation, we get:
![K_p=271.6\times (0.0821\times 523)^{-1}\\\\K_p=6.32](https://tex.z-dn.net/?f=K_p%3D271.6%5Ctimes%20%280.0821%5Ctimes%20523%29%5E%7B-1%7D%5C%5C%5C%5CK_p%3D6.32)
Hence, the value of
for the reaction is 6.32