Ok. PEMDAS tells us to take care of the square first. When we do that, the denominator becomes
(6.4)^2 x 10^12
= 40.96 x 10^12 .
Now it's just a matter of mashing out the fraction.
The 'mantissa' (the number part) is
6/40.96 = 0.1465
and the order of magnitude is
10^24 / 10^12 = 10^12 .
Put it all together and you've got
1.465 x 10^11 .
Answer:
10.6cm
Explanation:
We are given 5.3cm below the starting point (spring extension).
Therefore, to find static vertical equilibrium, we use the equation:
kx = mg
Where:
k = spring constant =
=mg/5.3 kg/s²
We are told the object was dropped from rest.
Therefore:
loss in potential energy = gain in spring p.e
Let's use the expression:
mgx = ½kx²
We are asked to find the stretch at maximum elongation x.
To find x, we make x subject of the formula.
Therefore, we have:
x = 2mg/k (after rearranging the equation above)
x = (2mg) / (mg/5.3)
x = 10.6cm
Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y
Explanation:
According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
(1)
Where;
is the Gravitational Constant
is the mass of the Earth
is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)
So for satellite X, the orbital period
is:
(2)
Where 
(3)
(4)
For satellite Y, the orbital period
is:
(5)
Where 
(6)
(7)
This means 
Now let's calculate the tangential speed for both satellites:
<u>For Satellite X:</u>
(8)
(9)
<u>For Satellite Y:</u>
(10)
(11)
This means 
Therefore:
Satellite X has a greater period and a slower tangential speed than Satellite Y