Answer:
the observed frequency will reduce but the wavelength will increase
Explanation:
As we know
fo = fs (v/(v-vs))
fo = observed frequency
vs = velocity of source
As per this equation,
When an observer moves away from the stationary source, the observed frequency reduces. Since the observer in the balloon is moving away from the source which itself is moving in opposite direction, the observed frequency will reduce.
Since wavelength = V/fs . The source frequency is unchanged but the velocity is increasing as it is moving in downward direction. Hence, the wavelength will increase
<h2><u>Answer:</u></h2><h2>A. Displacement</h2><h2>B. Time</h2><h2 /><h2>Your Welcome ❤</h2>
Answer:hypothesis: the plant died of lack of light,moisture,or water
Explanation:
to test my hypothesis i put a plant in a room at room temp and repeat how i grew it,and observe what went wrong. hope this helps=)
Answer:

Explanation:
It is given that,
Angular speed of the football spiral, 
Radius of a pro football, r = 8.5 cm = 0.085 m
The velocity is given by :


v = 3.68 m/s
The centripetal acceleration is given by :



So, the centripetal acceleration of the laces on the football is
. Hence, this is the required solution.
The thin atmosphere of Mars is thought to be due to the planet's lack of a magnetic field, which has allowed the Solar wind to blow away much of the gas the planet once had. Venus, despite still having a thick atmosphere of CO2, surprisingly has a similar problem