This is a question about converting energy from one form to another.
<span>While it is sitting on the ledge, it isn't moving, so at that point it doesn't have any kinetic energy. What it has is gravitational potential energy due to its height above the ground. </span>
<span>Just as it lands, it's at ground level, so it doesn't have any gravitational potential energy anymore. </span>
<span>The reason is that on the way down, it sped up, so all its original gravitational potential energy was turned into kinetic energy. </span>
<span>So if you can work out how much potential energy it had to start with, you will know that that is how much kinetic energy it ended up with just before it landed. </span>
<span>potential energy = m * g * h </span>
<span>where m is the mass, g is the acceleration due to gravity and h is the height </span>
potential energy = 4.45 * 9.81 * 0.800 = 35.3 J
Hope that helps. Please give me Brainlyest answer. :]
High temperature solids (d)
Answer:
Δy= 5,075 10⁻⁶ m
Explanation:
The expression that describes the interference phenomenon is
d sin θ = (m + ½) λ
As the observation is on a distant screen
tan θ = y / x
tan θ= sin θ/cos θ
As in ethanes I will experience the separation of the vines is small and the distance to the big screen
tan θ = sin θ
Let's replace
d y / x = (m + ½) λ
The width of a bright stripe at the difference in distance
y₁ = (m + ½) λ x / d
m = 1
y₁ = 3/2 λ x / d
Let's use m = 1, we look for the following interference,
m = 2
y₂ = (2+ ½) λ x / d
The distance to the screen is constant x₁ = x₂ = x₀
The width of the bright stripe is
Δy = λ x / d (5/2 -3/2)
Δy = 630 10⁻⁹ 2.90 /0.360 10⁻³ (1)
Δy= 5,075 10⁻⁶ m