1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bad White [126]
2 years ago
15

Power is the rate at which...........is done or the rate at which........... is converted from one form to another .

Physics
1 answer:
34kurt2 years ago
8 0

Answer:

the answer is c I thought

You might be interested in
I need help with question 4 please​
Yuki888 [10]

Answer:

V = 10 km / 1 hr = 10 km/hr

V = -10 j km / hr   if one were to use i, j, k as unit vectors with the usual orientation

4 0
3 years ago
¿Qué cantidad de calor absorbió una masa de 4 g de cinc al pasar de 20 °C a<br> 180 °C?
Alborosie

(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,

Ce = 0.093 cal/g. °c

Q = m C ΔT

Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )

Q= 4×0.093 × 160

Q = 59.52 cal

I hope I helped you^_^

7 0
2 years ago
Can someone plz answere my question<br> for science
klio [65]
Whats the question?
djdkkd
5 0
2 years ago
Fa car's power output is increased, its efficiency:
Inessa [10]
It’s solved by using a pretty standard formula for efficiency.

4 0
3 years ago
An infinite line of charge with linear density λ1 = 8.2 μC/m is positioned along the axis of a thick insulating shell of inner r
bixtya [17]

1) Linear charge density of the shell:  -2.6\mu C/m

2)  x-component of the electric field at r = 8.7 cm: 1.16\cdot 10^6 N/C outward

3)  y-component of the electric field at r =8.7 cm: 0

4)  x-component of the electric field at r = 1.15 cm: 1.28\cdot 10^7 N/C outward

5) y-component of the electric field at r = 1.15 cm: 0

Explanation:

1)

The linear charge density of the cylindrical insulating shell can be found  by using

\lambda_2 = \rho A

where

\rho = -567\mu C/m^3 is charge volumetric density

A is the area of the cylindrical shell, which can be written as

A=\pi(b^2-a^2)

where

b=4.7 cm=0.047 m is the outer radius

a=2.7 cm=0.027 m is the inner radius

Therefore, we have :

\lambda_2=\rho \pi (b^2-a^2)=(-567)\pi(0.047^2-0.027^2)=-2.6\mu C/m

 

2)

Here we want to find the x-component of the electric field at a point at a distance of 8.7 cm from the central axis.

The electric field outside the shell is the superposition of the fields produced by the line of charge and the field produced by the shell:

E=E_1+E_2

where:

E_1=\frac{\lambda_1}{2\pi r \epsilon_0}

where

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 8.7 cm = 0.087 m is the distance from the axis

And this field points radially outward, since the charge is positive .

And

E_2=\frac{\lambda_2}{2\pi r \epsilon_0}

where

\lambda_2=-2.6\mu C/m = -2.6\cdot 10^{-6} C/m

And this field points radially inward, because the charge is negative.

Therefore, the net field is

E=\frac{\lambda_1}{2\pi \epsilon_0 r}+\frac{\lambda_2}{2\pi \epsilon_0r}=\frac{1}{2\pi \epsilon_0 r}(\lambda_1 - \lambda_2)=\frac{1}{2\pi (8.85\cdot 10^{-12})(0.087)}(8.2\cdot 10^{-6}-2.6\cdot 10^{-6})=1.16\cdot 10^6 N/C

in the outward direction.

3)

To find the net electric field along the y-direction, we have to sum the y-component of the electric field of the wire and of the shell.

However, we notice that since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, this means that the net field produced by the wire along the y-direction is zero at any point.

We can apply the same argument to the cylindrical shell (which is also infinite), and therefore we find that also the field generated by the cylindrical shell has no component along the y-direction. Therefore,

E_y=0

4)

Here we want to find the x-component of the electric field at a point at

r = 1.15 cm

from the central axis.

We notice that in this case, the cylindrical shell does not contribute to the electric field at r = 1.15 cm, because the inner radius of the shell is at 2.7 cm from the axis.

Therefore, the electric field at r = 1.15 cm is only given by the electric field produced by the infinite wire:

E=\frac{\lambda_1}{2\pi \epsilon_0 r}

where:

\lambda_1=8.2\mu C/m = 8.2\cdot 10^{-6} C/m is the linear charge density of the wire

r = 1.15 cm = 0.0115 m is the distance from the axis

This field points radially outward, since the charge is positive . Therefore,

E=\frac{8.2\cdot 10^{-6}}{2\pi (8.85\cdot 10^{-12})(0.0115)}=1.28\cdot 10^7 N/C

5)

For this last part we can use the same argument used in part 4): since the wire is infinite, for the element of electric field dE_y produced by a certain amount of charge dq along the wire there exist always another piece of charge dq on the opposite side of the wire that produce an element of electric field -dE_y, equal and opposite to dE_y.

Therefore, the y-component of the electric field is zero.

Learn more about electric field:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Which liquid is more dense ???? alcohol or water
    11·1 answer
  • The Milky Way is a _____ galaxy.
    11·2 answers
  • At a waterpark, sleds with riders are sent along a slippery, horizontal surface by the release of a large, compressed spring. Th
    15·2 answers
  • Please help me with this question
    11·1 answer
  • What kind of map might have diagrams of air pressure?
    11·1 answer
  • Eric throws a basketball straight up into the air. As it rises, which form of energy is increasing? A. elastic potential energy
    8·2 answers
  • A skier weighing 86.2 kg starts from rest and slides down a 32.0-m frictionless slope that is inclined at an angle of 15.0° with
    14·1 answer
  • Which of the following is not an appropriate category of childrens book to include in the early childhood classroom?
    5·2 answers
  • A baseball strikes the catcher's glove with a horizontal velocity of 40 m/s. The mass of the baseball is 0.15 kg. The displaceme
    12·1 answer
  • It is possible for an object in free fall to be moving:
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!