Inertia. Inertia is the natural tendency of bodies to remain in their states of either rectilinear or resting motion.
Magnesium has atomic no 12
Electronic configuration given by
Or
Answer:
E) Intramolecular bond angles change
Explanation:
Infrared Radiation:
IR is electromagnetic radiations. The wavelength i.e. 700nm to 1000 mm of infrared is longer than invisible light and Its frequency is lower than light, that's why it is invisible to light.
- When IR radiation strike the molecule it absorbed by this molecule.
- This radiation used to identify and study chemicals.
- Infrared radiation interact with intra-bonds of the molecule.
- Bonds in the molecules have vibrational translational and rotational movements
- Due to these vibration, rotation and translation movement it absorb a radiation of specific frequency and wavelength
- These movements of bond are very small and absorbs radiations of very low frequency
- So when Infrared light or radiation absorbed the intra-bonds of the molecule get affected and angles of these bonds changes.
- As the frequency of the absorbed radiation matches the frequency of the bond that vibrates.
So
The correct option is option E
E) Intramolecular bond angles change
* Note:
it couldn't be option A as the frequency of IR is not enough to rotate a whole molecule
It Couldn't be option B as IR rations are electromagnetic radiation of longer wave length so it one can not see it with light so how it will glow a molecule
It also not could be the option C as for the excitation of electrons require much higher energy.
It also not the option D as nuclear magnetic spin is associated with nuclear magnetic radiation that are much different from IR.
Answer:
1.47 atm
Explanation:
Step 1: Given data
- Initial volume (V₁): 32.4 L
- Initial pressure (P₁): 1 atm (standard pressure)
- Initial temperature (T₁): 273 K (standard temperature)
- Final volume (V₂): 28.4 L
- Final temperature (T₂): 352 K
Step 2: Calculate the final pressure of the gas
We can calculate the final pressure of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
P₂ = P₁ × V₁ × T₂ / T₁ × V₂
P₂ = 1 atm × 32.4 L × 352 K / 273 K × 28.4 L = 1.47 atm
The answer is
Physical properties: Properties that do not change the chemical nature of matter
Chemical properties: Properties that do change tha chemical nature of matter
Examples of physical properties are: color, smell, freezing point, boiling point, melting point, infra-red spectrum, attraction (paramagnetic) or repulsion (diamagnetic) to magnets, opacity, viscosity and density. There are many more examples. Note that measuring each of these properties will not alter the basic nature of the substance.
Examples of chemical properties are: heat of combustion, reactivity with water, PH, and electromotive force.