I believe the answer is B.
Answer:
C
Explanation:
The enthalpy of the reactants is greater than that of the products.
To solve this question,
let us first calculate how much all the nucleons will weigh when they are apart,
that is:
<span>Mass of 25 protons = 25(1.0073) = 25.1825 amu </span>
Mass of neutrons = (55-25)(1.0087) = 30.261 amu
So, total mass of nucleons = 30.261+25.1825 =
55.4435 amu
<span>Now we subtract the mass of nucleons and mass of the Mn
nucleus:
55.4435 - 54.938 = 0.5055 amu
This difference in mass is what we call as the mass defect of
a nucleus. Now we calculate the binding energy using the formula:</span>
<span> E=mc^2 </span>
<span>But first convert mass defect in units of SI (kg):
Δm = 0.5055 amu = (0.5055) / (6.022x10^26)
<span>Δm = 8.3942x10^-28 kg</span>
Now applying the formula,
E=Δm c^2
E=(8.3942x10^-28)(3x10^8)^2
E=7.55x10^-11 J</span>
Convert energy from Joules
to mev then divide by total number of nucleons (55):
E = 7.55x10^-11 J *
(6.242x10^12 mev / 1 J) / 55 nucleons
<span>E = 8.57 mev / nucleon</span>