I believe the correct answer from the choices listed above is option C. A group of students is asking people whether they use plastic bags. By doing such, the students are <span>collecting data. They are collecting data of how many people uses plastic bags. Hope this answers the question.</span>
I think it’s the first option
Answer:

Explanation:
Centripetal acceleration (a) is defined as the square of an object's velocity (V^2) divided by the distance of the object from it's point/axis of revolution (r). So:

which allows us to solve for the velocity:

Answer:
1 mile
Explanation:
We can use the following equation of motion to solve for this problem:

where v m/s is the final take-off velocity of the airplane,
initial velocity of the can when it starts from rest, a is the acceleration of the airplanes, which are the same, and
is the distance traveled before takeoff, which is minimum runway length:


From here we can calculate the distance ratio


Since the 2nd airplane has the same acceleration but twice the velocity


So the minimum runway length is 1 mile
Answer:
) the uniform disk has a lower moment of inertia and arrives first.
Explanation:
(a) the uniform disk has a lower moment of inertia and arrives first.
(b) Let's say the disk has mass m and radius r, and
the hoop has mass M and radius R.
disk: initial E = PE = mgh
I = ½mr², so KE = ½mv² + ½Iω² = ½mv² + ½(½mr²)(v/r)² = (3/4)mv² = mgh
m cancels, leaving v² = 4gh / 3
hoop: initial E = Mgh
I = MR², so KE = ½MV² + ½(MR²)(V/R)² = MV² = Mgh
M cancels, leaving V² = gh
Vdisk = √(4gh/3) > Vhoop = √(gh)