The radius, r, of the child from the center of the wheel is
r = 1.3 m
The wheel makes one revolution in 4.2 s. Its angular velocity is
ω = (2π rad)/(4.2 s) = 1.496 rad/s
The linear speed of the child is the tangential velocity, given by
v = rω
= (1.3 m)*(1.496 rad/s)
= 1.945 m/s
Answer: 1.95 m/s (nearest hundredth)
Answer:
Explanation:
First of all we shall find the velocity at equilibrium point of mass 1.2 kg .
It will be ω A , where ω is angular frequency and A is amplitude .
ω = √ ( k / m )
= √ (170 / 1.2 )
= 11.90 rad /s
amplitude A = .045 m
velocity at middle point ( maximum velocity ) = 11.9 x .045 m /s
= .5355 m /s
At middle point , no force acts so we can apply law of conservation of momentum
m₁ v₁ = ( m₁ + m₂ ) v
1.2 x .5355 = ( 1.2 + .48 ) x v
v = .3825 m /s
= 38.25 cm /s
Let new amplitude be A₁ .
1/2 m v² = 1/2 k A₁²
( 1.2 + .48 ) x v² = 170 x A₁²
( 1.2 + .48 ) x .3825² = 170 x A₁²
A₁ = .0379 m
New amplitude is .0379 m
Answer:
Juan Pablo Duarte was a Dominican military leader, writer, activist, and nationalist politician who was the foremost of the founding fathers of the Dominican Republic.
Answer:
Decreases/Reduces
Explanation:
Fill in the blank:
Consider the equation Work = Force X Distance.
<em>If a machine increases the distance over which a force is exerted, the force
</em>
<em>required to do a given amount of work</em> .........
If the work is a constant value, then by isolating force from the equation, we get:
Force = Work / Distance
By increasing the value of the Distance, then the quotient Work. Distance diminishes, and therefore the required force decreases (diminishes, reduces)
Answer: Decreases/Reduces