1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marissa [1.9K]
3 years ago
5

Your eyes form upside-down images, which are then flipped right-side-up by our brains.

Physics
2 answers:
Vitek1552 [10]3 years ago
4 0

Answer:

I believe it is true, but our brains don’t do it, I think it is the lenses in our eyes that do it. I might be wrong tho

Explanation:

N76 [4]3 years ago
4 0

Answer:

Yes it is true that our eyes form upside-down images, which are flipped right-side-up by our brain.

You might be interested in
A block starting from rest slides down the length of an 18 plank with an acceleration of 4.0 meters per second. How long does th
Snowcat [4.5K]

Answer:

\boxed{\text{\sf \Large 3.0 s}}

Explanation:

Use distance formula

\displaystyle d=ut+\frac{1}{2} at^2

u= \text{\sf  initial velocity}\\d= \text{\sf  distance}\\a= \text{\sf  acceleration}\\t= \text{\sf  time taken}

\displaystyle 18=0 \times t+\frac{1}{2} \times 4 \times t^2

t=3

4 0
3 years ago
Coherent light of wavelength 540 nm passes through a pair of thin slits that are 3.4 × 10-5 m apart. At what angle away from the
Scrat [10]

Answer: 1.8\°

Explanation:

The diffraction angles \theta_{n} when we have a slit divided into n parts are obtained by the following equation:

dsin\theta_{n}=n\lambda (1)

Where:

d=3.4(10)^{-5}m is the width of the slit

\lambda=540 nm=540(10)^{-9}m is the wavelength of the light  

n is an integer different from zero.

Now, the second-order diffraction angle is given when n=2, hence equation (1) becomes:

dsin\theta_{2}=2\lambda (2)

Now we have to find the value of \theta_{2}:

sin\theta_{2}=\frac{2\lambda}{d} (3)

Then:

\theta_{2}=arcsin(\frac{2\lambda}{d})   (4)

\theta_{2}=arcsin(\frac{2(540(10)^{-9}m)}{3.4(10)^{-5}m})   (5)

Finally:

\theta_{2}=1.8\°   (6)

5 0
3 years ago
car was moving in a straight road of length 320 km it covered 240 km with an average velocity 75 km/hr then it ran out of fuel a
Stella [2.4K]

The average velocity of the car for the whole journey is 69.57 km/h.

The given parameters:

  • <em>Length of the road, L = 320 km</em>
  • <em>Distance covered = 240 km at 75 km/h</em>
  • <em>time spent refueling, t₂ = 0.6 hr</em>
  • <em>Final velocity, = 100 km/hr</em>

The time spent by the before refueling is calculated as follows;

t = \frac{d}{v} \\\\t_1 = \frac{240}{75} \\\\t_1 = 3.2 \ hours

The time spent by the car for the remaining journey;

t_3 = \frac{320 - 240}{100} \\\\t_3 = 0.8 \ hr

The total time of the journey is calculated as follows;

t = t_1 + t_2 + t_3\\\\t = 3.2 \ hr \ + \ 0.6 \ hr \ + \ 0.8 \ hr\\\\t = 4.6 \ hours

The average velocity of the car for the whole journey is calculated as follows;

v = \frac{total \ distance }{total \ time} \\\\v = \frac{320}{4.6} \\\\v = 69.57 \ km/h

Learn more about average velocity here: brainly.com/question/6504879

6 0
3 years ago
A long, straight metal rod has a radius of 5.75 cm and a charge per unit length of 33.3 nC/m. Find the electric field at the fol
PIT_PIT [208]

Answer:

Explanation:

From the question;

We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.

We are to calculate the following task, i.e. to determine the electric field at the distances:

a)  at 4.75 cm

b)  at 20.5 cm

c) at 125.0 cm

Given that:

the charge (q) = 33.3 nC/m

= 33.3 × 10⁻⁹ c/m

radius of rod = 5.75 cm

a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.

Then, the electric field will be zero.

b) The electric field formula E = \dfrac{kq }{d}

E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{0.205}

E = 1461.95 N/C

c) The electric field E is calculated as:

E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{1.25}

E = 239.76 N/C

7 0
3 years ago
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
3 years ago
Other questions:
  • A marble accelerates from rest at a constant rate .it travels 36 m in 12.0 sec what’s is it’s final velocity and what was the ac
    5·1 answer
  • Seismic waves do not travel along the Earth’s surface. Please select the best answer from the choices provided
    5·2 answers
  • you push a 51 kg box with a force of 485 N. the friction force on the box is 232 N. calculate the acceleration of the crate.
    14·1 answer
  • With what minimum speed must you toss a 130 gg ball straight up to just touch the 15-mm-high roof of the gymnasium if you releas
    14·1 answer
  • What is the net displacement of the particle between 0 seconds and 80 seconds?
    15·2 answers
  • Whats a snoogley please help
    8·1 answer
  • Compare convergent plate boundaries that have the same density to convergent plate boundaries with different densities.
    7·1 answer
  • Answered: A 4 kg mass is attached to a horizontal spring with the spring constant of 600 N/m and rests on a frictionless surface
    9·1 answer
  • A boy lifted a 50 newton rock 1 meter. How much work was done?
    14·2 answers
  • Calculate the momentum of a 0.145 kg baseball being thrown at a speed of 40.0 m/s.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!