Answer:
15. 2.66 moles .
16. 2.09L.
Explanation:
Molarity of a solution is simply defined as the mole of solute per unit litre of the solvent. Mathematically, it is represented as:
Molarity = mole /Volume.
With the above formula, let us answer the questions given above
15. Data obtained from the question include the following:
Volume of solution = 1.4L
Molarity = 1.9M
Mole of solute =.?
Molarity = mole /Volume
1.9 = mole / 1.4
Cross multiply
Mole = 1.9 x 1.4
Mole = 2.66 moles
Therefore, the mole of the solute present in the solution is 2.66 moles.
16. Data obtained from the question include the following:
Mole of solute = 0.46 mole
Molarity = 0.22M
Volume of solvent (water) =.?
Molarity = mole /Volume
0.22 = 0.46/Volume
Cross multiply
0.22 x Volume = 0.46
Divide both side 0.22
Volume = 0.46/0.22
Volume = 2.09L
Therefore, 2.09L of water is required.
You should give answers since some people will just try and find any answer, which happened to me. So like if you have answers for the question just put them like A B C D kinda like true or false for others to know what they got instead of giving them more work, and then they just give you random answers.
Answer: Option (B) is the correct answer.
Explanation:
Expression for the given decomposition reaction is as follows.

Let us assume that x concentration of
is present at the initial stage. Therefore, according to the ICE table,

Initial : x 0
Change : - 0.1 
Equilibrium : (x - 0.1) 0.2
Now, expression for
of this reaction is as follows.

Putting the given values into the above formula as follows.



x = 0.12
This means that
= x = 0.12 atm.
Thus, we can conclude that the initial pressure in the container prior to decomposition is 0.12 atm.
The formula for Silver (I) chloride is: AgCl
Guy-Lussac's Law states that the volume and the temperature are directly proportional given that the pressure remains constant.
For this problem, we will assume constant pressure. Based on the law:
(Volume/Temperatur)1 = (Volume/Temperature)2
(3.75/100) = (6.52/T)
T = 166.667 kelvin