Answer:
I_weight = M L²
this value is much larger and with it it is easier to restore balance.I
Explanation:
When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by
v = w r
For man to maintain equilibrium needs the total moment to be zero
∑τ = I α
S τ = 0
The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.
Therefore the moment of the masses and the open is the one that must be zero.
If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope
I = ⅓ m L² / 4
As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.
If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is
I_weight = M L²
this value is much larger and with it it is easier to restore balance.
Answer:
n=6.56×10¹⁵Hz
Explanation:
Given Data
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
To find
Revolutions per second
Solution
Let F be the force of attraction
let n be the number of revolutions per sec made by the electron around the nucleus then the centripetal force is given by
F=mω²r......................where ω=2π n
F=m4π²n²r...............eq(i)
as the values given where
Mass=9.1×10⁻³¹ kg
Radius distance=5.3×10⁻¹¹m
Electric Force=8.2×10⁻⁸N
we have to find n from eq(i)
n²=F/(m4π²r)

Answer:
Mechanical
Explanation:
Electromagnetic waves are waves that have no medium to travel whereas mechanical waves need a medium for its transmission.