Explanation:
tilting it will raise the height of its center of gravity.
Answer:
I think it is the last one.
Explanation:
I am not sure because i am stuck on this one, too.
Answer:

Explanation:
What problem says can be written mathematically as:

Where:

The problem itself it's really simple, we only need to replace the data provided in the previous equation, but first, let's convert the units of the velocity from cm/s to m/s because we have to work with the same units and working in meters is the most apropiate action, because is the base unit of length in the International System of Units:

Now, we can replace the data in the equation and find the time it will take the bird to travel 3.7 m:

Solving for t, multiplying by t both sides, and dividing by 0.52 both sides:

The gravitational forces between the Earth and Moon are greatest when the two bodies are closest together. That happens every 27.32 days, when the Moon is at the perigee of its orbit.
Even if this happened at the same time in every orbit, the date would change, because there are not 27.32 days in a month.
But it doesn't happen at the same time in every orbit ... the Moon's perigee precesses around its orbit, on account of the gravitational forces toward the Earth, the Sun, Venus, Mars, and the other planets.
The formula that is applicable here is E = kQ/r^2 in which the energy of attraction is proportional to the charges and inversely proportional to the square of the distance. In this case,
kQ1/(r1)^2 = kQ2/(r2)^2 r1=l/3, r2=2l/3solve Q1/Q2
kQ1/(l/3)^2 = kQ2/(2l/3)^2 kQ1/(l^2/9) = kQ2/(4l^2/9)Q1/Q2 = 1/4