Answer:
Yes, it is very helpful.
Explanation:
It's helpful since in a cell, plant or animal, there are a lot of different things. It's hard to memorize everything and know what they look like. Using a model can help you memorize everything better and even understand it better. If someone asked me where or what something was in a cell I think I would be able to recognize it better.
I hope this helps!
Answer:
it's the distance between objects in space
Explanation: Light travels super fast; but it still takes a long time to travel between objects in space. This is because distances between objects in space are enormous.
And can i please receive a brainliest and have a good day
Answer:
See Explanation
Explanation:
The question is incomplete, as there are no diagrams or options to provide more information to the question.
The general explanation is as follows:
For the object not to move
(1): The forces acting on the object must opposite each other. i.e. if force A acts at the right (or positive direction), force B will act at the left (or negative direction).
(2) The two forces must be equal.
So, for instance:
If the pair of forces are 5N and 5N in opposite directions, the object wil not move.
However, if one of the forces is greater, the object will move towards the direction of the greater force.
<h2>
Time taken is 0.459 seconds</h2>
Explanation:
We have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = 81 km/hr = 22.5 m/s
Time, t = ?
Acceleration, a = 49 m/s²
Substituting
v = u + at
22.5 = 0 + 49 x t
t = 0.459 seconds
Time taken is 0.459 seconds
Explanation:
We define force as the product of mass and acceleration.
F = ma
It means that the object has zero net force when it is in rest state or it when it has no acceleration. However in the case of liquids. just like the above mentioned case, the water is at rest but it is still exerting a pressure on the walls of the swimming pool. That pressure exerted by the liquids in their rest state is known as hydro static force.
Given Data:
Width of the pool = w = 50 ft
length of the pool = l= 100 ft
Depth of the shallow end = h(s) = 4 ft
Depth of the deep end = h(d) = 10 ft.
weight density = ρg = 62.5 lb/ft
Solution:
a) Force on a shallow end:



b) Force on deep end:



c) Force on one of the sides:
As it is mentioned in the question that the bottom of the swimming pool is an inclined plane so sum of the forces on the rectangular part and triangular part will give us the force on one of the sides of the pool.
1) Force on the Rectangular part:




2) Force on the triangular part:

here
h = h(d) - h(s)
h = 10-4
h = 6ft



now add both of these forces,
F = 25000lb + 150000lb
F = 175000lb
d) Force on the bottom:


