Answer:
2.77 * 10^5 m/s
Explanation:
Let us recall that kinetic energy is given by 1/2 mv^2
Where;
m = mass of the body
v = velocity of the body
In this case,
m = 3.38 * 10^31 kg
KE= 1.30 * 10^42 J
KE = 1/2 mv^2
v = √2KE/m
v = √2 * 1.30 * 10^42/3.38 * 10^31
v = √7.69 * 10^10
v = 2.77 * 10^5 m/s
A geologist is studying rock layers in an old river bed, and he finds a fossil of a fish and a horsetail rush in the same rock layer. According to the law of faunal and floral succession, the geologist can assume that the rock containing the fossils may date back as far as the <span>Devonian period</span>.
Answer:
The automobile's acceleration in that time interval is -2 m/s^2
Explanation:
The acceleration is defined as the rate of change of the velocity.
The average acceleration in a given lapse of time is calculated as:
A = (final velocity - initial velocity)/time.
In this case, we have:
initial velocity = 31 m/s
final velocity = 15 m/s
time = 8 seconds.
Then the average acceleration is:
A = (15m/s - 31m/s)/8s = -2 m/s^2
The answer would be stay because the surface is flat so it will stay!
Battery capacity (AH) is defined as a product of the current that is drawn from the battery while the battery is able to supply the load until its voltage is dropped to lower than a certain value for each cell.