I would say C i'm not 100% sure
Answer:
4km
Explanation:
15 minutes is 1/4 of an hour.
1/4 of 16 is 4.
mass of the bottle in each case is M = 0.250 kg
now as per given speeds we can use the formula of kinetic energy to find it
1) when speed is 2 m/s
kinetic energy is given as


2) when speed is 3 m/s
kinetic energy is given as


3) when speed is 4 m/s
kinetic energy is given as


4) when speed is 5 m/s
kinetic energy is given as


5) when speed is 6 m/s
kinetic energy is given as


Answer:
The current can't 'split down the parallel branch, because the diode is reverse biased so is blocking the flow of current. So basically it's acting as an open circuit. Also when the current flows it wouldn't reduce the currents amount flow through the resistor.
Explanation:
<span>1) The differential equation that models the RC circuit is :
(d/dt)V_capacitor </span>+ (V_capacitor/RC) = (V_source/<span>RC)</span>
<span>Where the time constant of the circuit is defined by the product of R*C
Time constant = T = R*C = (</span>30.5 ohms) * (89.9-mf) = 2.742 s
2) C<span>harge of the capacitor 1.57 time constants
1.57*(2.742) = 4.3048 s
The solution of the differential equation is
</span>V_capac (t) = (V_capac(0) - V_capac(∞<span>))e ^(-t /T) + </span>V_capac(∞)
Since the capacitor is initially uncharged V_capac(0) = 0
And the maximun Voltage the capacitor will have in this configuration is the voltage of the battery V_capac(∞) = 9V
This means,
V_capac (t) = (-9V)e ^(-t /T) + 9V
The charge in a capacitor is defined as Q = C*V
Where C is the capacitance and V is the Voltage across
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /T) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V
V_capac (4.3048 s) = (-9V)e ^(-4.3048 s /2.742 s) + 9V = -1.87V +9V
V_capac (4.3048 s) = 7.1275 V
Q (4.3048 s) = 89.9mF*(7.1275V) = 0.6407 C
3) The charge after a very long time refers to the maximum charge the capacitor will hold in this circuit. This occurs when the voltage accross its terminals is equal to the voltage of the battery = 9V
Q (∞) = 89.9mF*(9V) = 0.8091 C