Answer: 100 J
Explanation: 1/2 5 x 2^2 = 100
Hope this made any sense.
Prophase metaphase anaphase telophase
Explanation:
The Coulomb's law states that the magnitude of each of the electric forces between two point-at-rest charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

In this case we have an electron (-e) and a proton (e), so:

In this case, the electric force is negative, therefore, the force is repulsive and its magnitude is:

According to the Work-Energy Theorem, the work done on an object is equal to the change in the kinetic energy of the object:

Since the car ends with a kinetic energy of 0J (because it stops), then the work needed to stop the car is equal to the initial kinetic energy of the car:

Replace m=1100kg and v=112km/h. Write the speed in m/s. Remember that 1m/s = 3.6km/h:

Therefore, the answer is: 532,346 J.
Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s