1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
3 years ago
14

A 25.0 kg bag of peat moss sits in the back of a flatbed truck, driving up a hill. The bag experiences a 225N normal force. The

maximum acceleration the truck can have so the bag does not slip is 2.40 m/s2 . Calculate the (a) angle of the hill relative to horizontal and (b) coefficient of static friction between the bag and the truck. (c) The truck is now travelling on level ground at constant speed. The sand bag is tossed forward sliding along the truck bed with a horizontal speed of 2.55 m/s. If the coefficient of kinetic friction is 0.350, how far does the bag slide before coming to rest
Physics
1 answer:
malfutka [58]3 years ago
4 0

Answer:

a

   \theta  =  23.32^o

b

  \mu_s =  0.27

c

s =  0.948 \  m

Explanation:

From the question we are told that

The mass of the bag is m_b  =  25.0 \  kg

The normal force experienced is F_n  =  225 \ N

The maximum acceleration of the bag is a =  2.40 \  m/s^2

Generally this normal force experience by the bag is mathematically represented as

F_n  =  mg cos \theta

=> 225  =  (25 * 9.8) cos \theta

=> 0.9183  =   cos \theta

=> \theta  = cos^{-1}[0.9183]

=> \theta  =  23.32^o

Generally for the bag not to slip , it means that the frictional force is equal to the sliding force

F_f =  F_s

Hence F_f is mathematically represented as

F_f   =  \mu_s  *  F_n

While F_s is mathematically represented as

F_s   =  m * a

So

\mu_s  *  F_n = m * a

=> \mu_s  *  225 = 25 * 2.40

=> \mu_s =  0.27

Generally from the workdone equation we have that

KE_f - KE_i =  W_f

Here W_f is the work done by friction which is mathematically represented as

W_f  =  m * g * \mu_k * s

Here s is the distance covered by the bag

KE_f is zero given that velocity at rest is zero

and

KE_i = \frac{1}{2}  *  m* v_i^2

so

   \frac{1}{2}  *  m* v_i^2 = m * g * \mu_k * s

=>  \frac{1}{2}  *  v_i^2 =   g * \mu_k * s

substituting  2.55 m/s for v_i and 0.350 for  \mu_k  we have that

     \frac{1}{2}  *  2.55^2 =   9.8 * 0.350 * s

=> s =  0.948 \  m

You might be interested in
If C is 1kg and D is 100kg, and the initial velocities of both balls are 5m/s, how would the magnitude of the forces exerted by
kupik [55]

Answer:

Explanation:

The forces exerted by each mass is best understood in terms of their momentum.

Momentum is a sort of compelling force or impulse. It is given as:

                  Momentum  =  mass x velocity

Let us consider the momentum of the balls;

Substance C;

    Mass  = 1kg

     Velocity  = 5m/s

    Momentum of C = 1 x 5  = 5kgm/s

Substance D:

      Mass  = 100kg

      Velocity  = 5m/s

     Momentum of D  = 100kg x 5m/s  = 500kgm/s

Body D has a higher momentum compared to Body C. This suggests that body D will exert a higher force than C when they collide.

The higher the momentum, the more the force of impact it has.

3 0
3 years ago
A 210 kg meteoroid is heading toward the earth accelerates by 2.4 × 105 m/s2.
lidiya [134]
According to Newton's second law of motion, Force is the product of mass and acceleration of the object.
So, F = m * a

Here, m = 210 Kg
a = 2.4 * 10⁵ m/s²

Substitute their values, 
F = 210 * 2.4 * 10⁵ N
F = 504 * 10⁵ N
F = 5.04 * 10⁷ N

In short, Your Answer would be Option B

Hope this helps!
6 0
3 years ago
You have a set of calipers that can measure thicknesses of a few inches with an uncertainty of ± 0.005 inches. You measure the t
Bond [772]

Answer:

a) x = (0.0114 ± 0.0001) in , b) the number of decks is 5

Explanation:

a) The thickness of the deck of cards (d) is measured and the thickness of a card (x) is calculated

        x = d / 52

        x = 0.590 / 52

        x = 0.011346 in

Let's look for uncertainty

       Δx = dx /dd Δd

       Δx = 1/52 Δd

       Δx = 1/52  0.005

       Δx = 0.0001 in

The result of the calculation is

        x = (0.0114 ± 0.0001) in

b) You want to reduce the error to Δx = 0.00002, the number of cards to be measured is

           #_cards = n 52

The formula for thickness is

           x = d / n 52

Uncertainty

          Δx = 1 / n 52  Δd

         n = 1/52 Δd / Δx

         n = 1/52 0.005 / 0.00002

         n = 4.8

Since the number of decks must be an integer the number of decks is 5

3 0
3 years ago
Which of the following is an electromagnetic wave?
morpeh [17]
Your answer will be Radio Waves . 

That seems to be the only to make sense. Hope that helps u 
5 0
3 years ago
Read 2 more answers
A woman is applying 300N/m2 of pressure on to door with her hand. Her hand has area of 0.02m2. Work out the force being applied​
never [62]

Answer:

6N

Explanation:

Given parameters:

Pressure applied by the woman  = 300N/m²

Area = 0.02m²

Unknown:

Force applied  = ?

Solution:

Pressure is the force per unit area on a body

        Pressure  = \frac{force}{area}

         Force  = Pressure x area

        Force  = 300 x 0.02  = 6N

8 0
3 years ago
Other questions:
  • How do you know when a penalty has been called?
    15·1 answer
  • People are more likely to treat someone kindly if they've you that person's bad behavior as the result of an external attributio
    12·2 answers
  • A car dropped from a height of 44 meters fall to a height of zero meters. How fast will the car be traveling as it hits the grou
    8·1 answer
  • 1. A fixed pulley is a machine that increases the effort force.
    13·1 answer
  • A Force of 20N displaces a body about 45m how much work is done?​
    13·2 answers
  • A spring attached to a mass is at rest in the initial
    13·2 answers
  • The 20-g bullet is travelling at 400 m/s when it becomes embedded in the 2-kg stationary block. The coefficient of kinetic frict
    11·2 answers
  • The starship Enterprise approaches the planet Risa at a speed of 0.8c relative to the planet. On the way, it overtakes the inter
    7·1 answer
  • It is 2058 and you are taking your grandchildren to Mars. At an elevation of 34.7 km above the surface of Mars, your spacecraft
    9·1 answer
  • The triceps muscle in the back of the upper arm extends the forearm. This muscle in a professional boxer exerts a force of 2.00
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!