Answer:
<h2>3000 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 1000 × 3
We have the final answer as
<h3>3000 N</h3>
Hope this helps you
a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.
FORCE-physical power or strength possessed by a living being:
He used all his force in opening the window.
MOTION-the action or process of moving or of changing place or position; movement.
<span>Which group in the periodic table is known as salt formers?
The correct option is the last one: Halogen family.
</span><span>
You can find the halogen or "</span>salt formers" in the group 17 of the periodic table. These are:
- Fluorine.
-Chlorine.
- Bromine.
- Iodine.
- Astatine.
All of them are non-metallic elements and they have 7 electrons.
Answer:
In the Solar system, the Jovian planets are farther from the Sun. Majority of the extrasolar Jovian planets are closer to their stars. These are known as "Hot Jupiters". From the studies, the reason for the existence of massive Jovian planets to be closer to their star is found to be the gravitational interaction of these planets with other massive planets which pushes them closer to their stars. These planets are formed beyond the frost line initially but later on migrate inwards.