F - False.
Its greatest kinetic energy is at the point of release.
It has the least kinetic energy, zero, at its highest point in its path.
The greatest height the ball will attain is 3.27 m
<h3>Data obtained from the question</h3>
- Initial velocity (u) = 8 m/s
- Final velocity (v) = 0 m/s (at maximum height)
- Acceleration due to gravity (g) = 9.8 m/s²
The maximum height to which the ball can attain can be obtained as follow:
v² = u² – 2gh (since the ball is going against gravity)
0² = 8² – (2 × 9.8 × h)
0 = 64 – 19.6h
Collect like terms
0 – 64 = –19.6h
–64 = –19.6h
Divide both side by –19.6
h = –64 / –19.6h
h = 3.27 m
Thus, the greatest height the ball can attain is 3.27 m
Learn more about motion under gravity:
brainly.com/question/13914606
Answer:
changing the direction in which a force is exerted
Answer:
B) Yes, but only those electrons with energy greater than the potential difference established between the grid and the collector will reach the collector.
Explanation:
In the case when the collector would held at a negative voltage i.e. small with regard to grid So yes the accelerated electrons would be reach to the collecting plate as the kinetic energy would be more than the potential energy that because of negative potential
so according to the given situation, the option b is correct
And, the rest of the options are wrong
The correct answer among the choices is option D. Density is not one of the properties included in the ideal gas law. The law is expressed as: PV=nRT. As we can see, the pressure, the volume and the temperature of the gas are included in the law.